
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Feedback analysis in software product line forked developments
Anonymous Author(s)

Abstract
Software Product Lines (SPLs) enable the reuse of software compo-
nents or assets to generate a family of related products. Sometimes,
an SPL evolves into parallel developments (forks) to meet new re-
quirements. However, these forks do not always stay synchronized
with the central development, e.g., features can be added, removed,
or changed in the forked projects. In DevOps practices, feedback
analysis plays a central role in improving both software quality
and delivery processes. DevOps feedback analysis evaluates data
from the delivery pipeline and users to improve the software and
its deployment process continuously. Despite its importance, feed-
back analysis has been underexplored in the context of SPLs. In
this paper, we propose an approach to automate feedback analysis
in forked software product line developments that can allow us
to assist decision-making processes in answering questions such
as: Which features need more testing? What new features can be
incorporated? Which ones require refactoring? Which ones cause
more issues in production? Information can be gathered from var-
ious data sources such as source code repositories, bug tracking
systems, or continuous integration pipelines. To the best of our
knowledge, this is the first proposal using information from forked
SPL developments for feedback analysis. To evaluate the proposal,
we automatically analyzed 25 forks of an open-source SPL that
helped us assist in decision-making tasks, showing the feasibility
of our proposal.

CCS Concepts
• Software and its engineering→ Software evolution.

Keywords
SPL, fork analysis, feature evolution, traceability, feedback automa-
tion
ACM Reference Format:
Anonymous Author(s). 2025. Feedback analysis in software product line
forked developments. In Proceedings of 29th International Systems and Soft-
ware Product Line Conference (SPLC’25). ACM, New York, NY, USA, 12 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Software Product Lines (SPLs) provide a structured approach to
reuse software assets, enabling the systematic derivation of related
product variants. This paradigm aims to reduce both development
effort and time-to-market while enhancing product consistency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC’25, A Coruña, Spain
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

and quality. SPLs support scalability and adaptability to different
markets by allowing for the customization of final products based
on asset reuse.

An SPL may sometimes develop into parallel developments or
forks [5]. These forks often arise in response to new requirements
that are incompatible with the existing architecture or variabil-
ity constraints. The reasons for these forks can vary, including
customer-specific constraints, new technologies’ introduction, or
market shifts [13]. While forks enable quick and localized adap-
tations, they can also lead to independent evolution, which may
fragment the main development line.

This divergence hinders maintainability, limits asset reuse, and
introduces architectural inconsistencies [5]. Changes made in these
parallel branches are often not reintegrated into the central reposi-
tory, encouraging the emergence of ad hoc solutions and leading
to a loss of control over the product’s common evolution. Cen-
tralized variability management allows us to capture these new
requirements within the formal model. This approach prevents the
uncontrolled proliferation of versions [29] and ensures the traceabil-
ity and consistency of the SPL. Whenever possible, merging forks
into the mainline is essential for maintaining the sustainability of
the software ecosystem [34].

Continuous feedback analysis is a cornerstone of DevOps, fa-
cilitating early error detection, quality improvement, and faster
deployment cycles. However, automating this process becomes
more complex in fork-based development environments like those
in SPLs. In such scenarios, feedback becomes fragmented across
repositories and teams, posing challenges for systematic collection
and analysis. In addition, the identification and traceability of spe-
cific features [43] within forks require specialized approaches to
manage variability and maintain consistency in product develop-
ment [9].

Although feedback loops are essential in DevOps [17], their role
in SPLs is underexplored. SPL research has focused on variabil-
ity management, configuration, and evolution [32, 38]. Few works
address systematically collecting or analyzing user or developer
feedback across product variants. Existing SPL tooling lacks mech-
anisms for continuous feedback integration. Fork-based SPL devel-
opment further fragments feedback, increasing the challenge [43].
This gap limits data-driven decision-making in SPL engineering.

When parallel developments are not alignedwith themain line of
progress, tracking the behavior and evolution of features becomes
difficult. This lack of synchronization leads to uncertainty about
which parts of the system should be developed further, maintained,
or removed. In the absence of traceability, teams lack reliable infor-
mation for effective maintenance, test planning, and change impact
analysis. Consequently, the variability model no longer accurately
reflects the operational state of the SPL and becomes disconnected
from the actual state of the code [4].

We define automatic feedback collection as the extraction of de-
velopment data—such as commits, issues, and pull requests—from

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SPLC’25, September 01–September 05, 2025, A Coruña, Spain Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

forked repositories, with the aim of supporting the controlled evolu-
tion of the original SPL. Analyzing this feedback informs decision-
making at the feature level within the original SPL. Resulting ac-
tions—such as feature addition, refactoring, decomposition, or re-
moval—are grounded in evidence derived from development, test-
ing, and integration activities. This approach allows the SPL to
evolve coherently, integrating knowledge generated in derivative
or parallel developments, thus avoiding loss of synchronization
or proliferation of isolated solutions. We formulate the following
research questions to guide our contribution:

• RQ1. How can development activity from derivative forks be
collected and mapped to features?
This question explores the design of a data model that cap-
tures the relationship between features, data sources, and
tags to enable decision-making.

• RQ2. How can the analysis of traceability data support in-
formed decision-making in testing, feature evolution, and
CI/CD pipelines within an SPL?
This question explores how structured feedback extracted
from forks can help identify testing gaps, guide feature-level
changes, and improve integration workflows.

By answering these questions, we aim to provide a systematic
approach to SPL evolution that leverages evidence from distributed
development activities, thus bridging the gap between isolated forks
and the central variability model.

The remainder of this paper is structured as follows: Section
2 identifies the types of feedback in software engineering, the
software mining repositories, the evolution of SPLs and DevOps;
Section 3 details our proposal for automatic feedback collection
through a systematic flow; Section 4 performs an evaluation of the
proposal, first with a proof of concept on one repository and then
extending it to all forks; Section 5 details some threats to the validity
of the proposal, highlighting weaknesses; Section 6 discusses kinds
of forks and their limitations; Section 7 shows related work on
automatic feedback collection; and Section 8 presents conclusions
and future work.

2 Background
This work explores three key areas: feedback in development pro-
cesses, mining software repositories, and the evolution of software
product lines. It defines and classifies different types of feedback
and explains their role in agile methodologies. It also outlines tech-
niques to extract information from historical data in repositories.
Finally, it examines how to manage evolution and maintain trace-
ability in product lines.

2.1 Feedback analysis and DevOps practices
In software engineering, feedback refers to information obtained
from both software execution and stakeholder interactions, which
serves to guide the improvement of the product and the devel-
opment process. Feedback helps improve the product or the de-
velopment process. For example, end-user feedback on deployed
applications can be leveraged to refine requirements and identify
latent defects. This concept is key in Agile and DevOps [40]. These
methodologies focus on fast, continuous feedback cycles. They
allow developers to adjust quickly to real needs [39].

Academic literature has classified feedback into several cate-
gories [19, 27]. In software engineering, feedback can be explicit
(provided consciously by users), implicit (derived from use without
direct intervention), or continuous (permanently integrated into
the development process), all of which serve to validate and guide
the evolution of a software product.

• Explicit feedback. Explicit feedback refers to the feedback
that users are consciously providing. This feedback can
include activities such as filling out surveys, submitting
bug reports, or participating in interviews with developers.
This type of feedback gathers users’ subjective opinions and
is typically collected through direct interactions, such as
interviews, questionnaires, or suggestions in forums [27].

• Implicit feedback. Implicit feedback is collected indirectly
by inferring it from user behavior, often without the user’s
awareness. For instance, data from application usage, event
logs (telemetry), or automatically recorded user clicks are all
examples of implicit feedback. This type of feedback reflects
objective user behavior, highlighting how and when users
utilize specific features. [27].

• Continuous feedback. Continuous feedback focuses less on
user intentionality and more on the regularity and effec-
tiveness with which feedback is integrated into iterative
development cycles. Agile methodologies and continuous
delivery practices prioritize incorporating feedback at all
stages [20], avoiding the tendency to wait until the end of
the project. This approach necessitates continuous monitor-
ing of the system in production, which includes collecting
metrics and user feedback during each iteration. The de-
velopment team utilizes this information to make prompt
decisions [36].

Modern development practices such as DevOps operationalize
continuous feedback through automation and integration. Continu-
ous Integration (CI) enables teams tomerge code changes frequently
into a shared repository, triggering automated builds and tests that
detect issues early [24]. Continuous Deployment (CD) extends this
by automating the release of validated changes to production en-
vironments. These practices reduce manual overhead, accelerate
deployment timelines, and enhance the responsiveness of feedback
mechanisms [10, 35].

DevOps emphasizes short iteration cycles and relies on monitor-
ing tools to collect runtime data, user behavior, and system metrics.
This infrastructure supports the continuous collection and analysis
of feedback from production environments, enabling teams to react
quickly to failures, usage patterns, or changing requirements. Con-
temporary research on DevOps highlights its shift toward greater
cross-functional collaboration and automation, incorporating AI-
assisted techniques for tasks such as automated testing and deploy-
ment oversight [16].

2.2 Mining software repositories
Software repository mining is a field in software engineering. It ana-
lyzes historical data from development repositories. Its objective is
to extract actionable insights regarding software evolution, quality,
and development practices [23].

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Feedback analysis in software product line forked developments SPLC’25, September 01–September 05, 2025, A Coruña, Spain

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

These repositories, such as GitHub, contain valuable traces of de-
veloper activity, including commit histories, issue discussions, pull
requests, and test results [33]. Analyzing this data reveals patterns
in software evolution, team collaboration dynamics, and poten-
tial fault-prone areas or improvement opportunities [42]. Several
techniques and analysis goals have emerged in this field:

• Analysis of commit history. It identifies patterns of code
evolution, locates errors (e.g., using the SZZ algorithm [23]),
and detects coupled changes that reveal non-explicit logical
dependencies [23].

• Analysis of issues and defects. Studies bug reports and en-
hancement requests to predict faulty modules, measure
process metrics, and prioritize maintenance [11].

• Analysis of pull requests and revisions. Examines change pro-
posals and their review cycle to understand collaborative
dynamics and their impact on software quality [25].

• Analysis of developer contributions and profiles. It quantifies
individual contributions and uncovers the project’s socio-
technical structure, including identification of key contrib-
utors and risk associated with knowledge concentration
(e.g., the bus factor) [2].

• Analysis of code evolution and architecture. Reconstructs the
structural evolution of the software, identifies hot spots,
and analyzes the co-evolution of components [23].

2.3 Software product line evolution
SPL evolution involves controlled changes to reusable assets. The
goal is to adapt to new requirements, technologies, or markets. A
key research focus is the evolution of feature models. Researchers
have developed analysis techniques to detect inconsistencies after
changes, such as dead features. They have also proposed catalogs
of safe refactoring for feature models. These ensure that the set of
valid products remains the same. [37].

SPL evolution impacts a wide range of artifacts, including source
code, configuration files, documentation, and testing infrastructure.
It is important to keep feature models and implementations in sync.
This sync avoids inconsistencies and divergence [26]. Some ap-
proaches address this challenge by establishing explicit traceability
links between features and implementation artifacts, making their
relationships visible and maintainable throughout the lifecycle. Oth-
ers rely on static code analysis to automatically infer these links
by examining code dependencies, structural patterns, or historical
changes [21]. Other works have addressed the parallel evolution of
variants and the platform [22]. These works propose mechanisms
to propagate changes between them without breaking compati-
bility. Although secure evolution patterns and supporting tools
have been proposed, their adoption in industrial contexts remains
limited due to complexity, scalability issues, and integration chal-
lenges [6]. These industrial case studies in embedded systems and
enterprise software have shown the practical challenges: increasing
model complexity, erosion of variability, or misalignment between
requirements and architecture [3]. Despite these advances, the lit-
erature highlights some gaps. There is a need for more large-scale
empirical studies. Better integration between modeling tools and
real development practices is also needed [7]. Perdek and Vranic
introduce a fully automated, minimalist approach to SPL evolution

focused on code fragments [31]. Their method manages variabil-
ity autonomously. It uses annotations and configurable strategies.
The approach generates multiple views—code, graphs, logs, im-
ages, and ontologies. These views support simulation, analysis, and
traceability.

3 Automatic feedback collection
Figure 1 outlines a process in which domain engineers initially
develop the SPL by defining core assets and maintaining the vari-
ability model. Over time, application engineers create forks of the
SPL to implement specific requirements or address limitations not
covered by the original version.

These forks develop independently and may involve multiple de-
velopers working simultaneously. Each fork produces development
artifacts—such as commits and issues—that can be systematically
collected and analyzed. We identify three primary sources from
which technical feedback can be obtained.

• Version control systems (VCS).The repositorymetadata stores
the complete history of commits, file modifications, and
authorship, allowing us to track how the fork evolves over
time [41].

• Project tracking software. Platforms that support collabo-
ration workflows—such as pull or merge requests, issue
tracking, and review discussions—provide insights into de-
velopment coordination, integration efforts, and review
dynamics [8].

• CI/CD infrastructure. Continuous integration and deploy-
ment systems generate logs from automated builds, tests,
and deployments. These artifacts expose which features
are deployed, which fail, and under which conditions or
configurations [14].

The collected data is used to generate what we refer to as a delta
version, representing the cumulative evolution within a fork over a
specific period (typically 4 to 6 months) [44] and includes changes
such as added, removed, or modified features.

In a general setting, it is first necessary to identify and localize
features within the codebase to track feature evolution. This iden-
tification often requires an intermediate abstraction step to infer
these feature boundaries from code changes using static analysis,
dependency graphs, or naming conventions. In our case study, how-
ever, the set of features is already explicitly defined in a structured
format, allowing us to associate development activity with known
features directly. While this structure facilitates direct mapping, less
structured systems may require additional feature identification
techniques such as static analysis or pattern recognition.

All delta versions are consolidated into a centralized structure,
referred to as the feedback log. This log serves as the foundation
for consolidating technical evidence across forks, enabling feature-
centric analysis to inform the evolution of the SPL. By leveraging
this log, maintainers can systematically identify relevant modifica-
tions in derivative developments and guide the adaptation of the
central product line in a traceable and coherent way.

Figure 2 presents an overview of the automatic feedback col-
lection process designed to support SPL evolution from forked
developments. This comprehensive process involves the following
stages:

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

SPLC’25, September 01–September 05, 2025, A Coruña, Spain Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 1: Evolution of an SPL based on forked developments

(1) Initial versions of forks: The process starts with one or more
forks created from the original SPL, representing parallel
developments. Each fork begins from an initial version of
the SPL, adapting it to specific needs or requirements.

(2) Data source: Feedback from each fork is automatically gath-
ered through development activities, such as commits, is-
sues, and pull requests. These provide granular details of
the development progress and changes made.

(3) Data processing: Collected data from each fork is system-
atically filtered, processed, and consolidated to generate a
coherent representation of changes. This stage produces a
Delta version, which encapsulates all relevant modifications,
including new, extended, or refactored features.

(4) Feedback log: All delta versions data source from multiple
forks are collected into a centralized Feedback log, forming
a comprehensive repository of changes and enhancements
derived from various forks. This log serves as a unified
data structure aggregating feedback from multiple forks,
enabling feature-centric analysis.

(5) Analysis: Data from the feedback log is analyzed by cate-
gorizing it into testing-related questions, feature-related
questions, and CI/CD pipeline questions. This analysis iden-
tifies areas of improvement, recurrent issues, and feature
requirements.

(6) Decision-making: Based on analytical outcomes, informed
decisions are taken to evolve the SPL. Possible actions in-
clude testing features, adding, extending, refactoring, split-
ting, or deleting features, and modifying CI/CD pipelines.

3.1 Initial versions of forks
SPL evolution often initiates through the creation of forks, which
represent independent development trajectories derived from the
original product line. Forks represent parallel developments that
address requirements or enhancements not included in the main
product line.

This fork ensures the retention of core functionalities while en-
abling targeted modifications. Thus, forks facilitate targeted adap-
tations and exploratory development in response to evolving re-
quirements.

3.2 Data source
Table 1 summarizes the types of development activities that can be
supported in general by the selected data sources—issues, commits,
and pull requests—without requiring additional advanced analysis
or tooling. The goal is to characterize the potential of each source
in terms of the information it can provide for feedback extraction. A
Yes indicates native support for the activity, while ± denotes partial
or indirect support [12].

Commits offer valuable insights into code changes and fixes,
while issues and merge requests are important for their textual
information and tagging capabilities. Therefore, to gain a compre-
hensive understanding of a project’s behavior and evolution, it is
essential to combine multiple data sources from version control,
project tracking systems, and collaboration workflows.

• Issues: They allow for identifying recurring problems, fea-
ture requests, and system weaknesses reported by users or

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Feedback analysis in software product line forked developments SPLC’25, September 01–September 05, 2025, A Coruña, Spain

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 2: Automatic feedback collection

Data source O
bt
ai
n
te
xt
ua
l

in
fo
rm

at
io
n

Fi
le
s

m
ap
pi
ng

Fi
le
s

ev
ol
ut
io
n

Id
en
tif
y

co
rr
ec
tio

ns

La
be
lli
ng

Issues Yes Yes ± Yes Yes
Commits Yes Yes Yes Yes ±
PR Yes ± ± Yes Yes

Table 1: Relation between data sources and supported activity
types

fork developers. This source helps detect conflicting func-
tionalities, recognize needs not covered by the original SPL,
and extract relevant descriptive tags to categorize changes.

• Commits: They reflect the technical evolution of each fork,
including modified files, the type of change (addition, dele-
tion, modification), and associated messages. Through com-
mit analysis, it is possible to track the evolution of a feature,
associate changes to specific technical decisions such as
refactoring or extensions, and measure the frequency and
impact of modifications over time.

• Pull Requests (PR): They represent integration proposals,
collaborative reviews, and validations through automatic
pipelines. Their analysis allows for an understanding of
the dynamics of developer collaboration, identifying which
changes were accepted or rejected and why, and observing
the results of automatic tests associated with new function-
alities or refactoring.

While the current implementation emphasizes issues, commits,
and pull requests, the proposed methodology is extensible to in-
corporate additional feedback sources. Other data sources—such
as code review comments, CI/CD logs, test coverage reports, or
runtime telemetry—can also be integrated to enrich the feedback
log. The flexibility of the model allows adaptation to different de-
velopment workflows.

3.3 Data processing
Our proposal defines a traceability mechanism that captures how
development activity relates to specific features in the SPL. This
is formalized as a ternary relation that captures the association
between features, data sources, and semantic descriptors of devel-
opment activity.

In general, such informational elements could takemany forms—e.g.,
extracted patterns, metadata, or semantic annotations. In our case,
we instantiate this dimension using semantic tags: textual labels
(e.g., fix, mock, ci) assigned to elements from data sources—such
as issues, commits, or pull requests—that convey meaningful infor-
mation about the nature of the change.

The goal is to formalize a structure that captures the relationship
between three key dimensions:

• Feature — a functional unit defined in the SPL variability
model.

• Data source type — the origin of the information (e.g.,
commit, issue, pull request).

• Tag — a semantic label describing the nature of the associ-
ated activity.

We formalize the traceability relation as a ternary relation:

𝑇 ⊆ F × D × L (1)
where:

• F is the set of features in the SPL,
• D is the set of data source types,
• L is the set of semantic tags used in our implementation.

Each tuple ⟨𝑓 , 𝑑, ℓ⟩ ∈ 𝑇 indicates that feature 𝑓 is associated with
tag ℓ , extracted from data source type 𝑑 .

This traceability structure supports many-to-many mappings be-
tween dimensions: a single feature may be associated with multiple
tags and data sources, and conversely, a tag may be used across mul-
tiple features and sources. The structure 𝑇 serves as the analytical
foundation for answering feature-centric questions, as developed
in Section 3.5.

The mapping process is flexible, adapting to various project
structures and technologies. It allows for both manual and auto-
mated identification and tagging of features. This phase directly
addresses RQ1, which explores how development activities from
derivative forks can be collected and associated with features. We

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

SPLC’25, September 01–September 05, 2025, A Coruña, Spain Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

systematically capture the relationships between features, data
sources, and semantic annotations by organizing repository data
into a traceability structure. This setup enables accurate tracking
of feature-related activities across different forks. To establish this
traceability structure, we implement a three-step mapping process:

3.3.1 Feature identification and location. The process starts by ob-
taining a list of SPL features. Domain experts can manually define
or infer this list from system artifacts such as documentation, vari-
ability models, or code structure.

3.3.2 Linking data sources to features. Issues, commits, and pull
requests are collected from the project repository. Each data source
type is linked to one or more features based on the files it affects. If a
data source type (e.g., a commit) modifies files known to implement
a given feature, it is associated with the corresponding feature.

3.3.3 Tag assignment. Semantic tags are assigned to each element.
This step can be explicit—reusing existing labels from issue trackers
or version control systems—or inferred using automatic techniques.
For example, tagging can be automated based on predefined cate-
gories, helping identify features under development, fixed, or dis-
cussed. Additionally, word cloud analysis can be used to visualize
the most frequent terms in commit messages, issue descriptions, or
documentation, offering insights for tag suggestion or refinement.

3.4 Feedback log
Up to this point, each fork has been processed independently. Fea-
ture identification, linkage, and tagging were applied in isolation.
The feedback log consolidates the results from all forks into a uni-
fied, structured dataset that preserves semantic, contextual, and
temporal information.

Φ ⊆ F × D × L × K ×Z (2)

where:
• F is the set of features,
• D is the set of data source types,
• L is the set of semantic tags,
• K is the set of forks,
• Z is the set of timestamps.

Each tuple ⟨𝑓 , 𝑑, ℓ, 𝑘, 𝑧⟩ ∈ Φ represents a tagged development
activity associated with feature 𝑓 , extracted from data source type
𝑑 , carrying tag ℓ , and originating from fork 𝑘 at time 𝑧. In our
implementation, the informational elements in L are instantiated
as semantic tags that summarize the nature of the activity (e.g., fix,
mock, ci).

3.5 Analysis
The analysis focuses on how features evolve across forks and how
tagged elements (issues, commits, and pull requests) reflect this
evolution. This analysis addresses RQ2, which examines how trace-
ability data can support decision-making in testing, feature evo-
lution, and CI/CD workflows within an SPL. By analyzing tagged
development artifacts across forks, we extract structured feedback
that helps identify testing gaps, assess the evolution of specific fea-
tures, and understand their impact on integration and deployment

processes. Using the structure defined in Structure 2, we can query
the dataset to identify patterns related to:

3.5.1 Testing questions. Testing is crucial to ensure feature relia-
bility and maintainability. The following aspects are analyzed:

• Which features require additional testing? Identifying fea-
tures with limited test coverage helps prioritize test devel-
opment.

• Which features require refactoring to improve testability?
Some features may be tightly coupled or have complex
dependencies, making testing difficult.

• Which integration tests are most needed? Determining criti-
cal feature interactions that require end-to-end validation.

• Which tests rely heavily on mocks? Analyzing the exces-
sive use of mocks can reveal coupling between features,
suggesting potential redesigns.

3.5.2 Feature questions. Feature evolution across forks provides
insights into how the SPL can be improved. The following aspects
are examined:

• Which features are extended with new models? Identifying
extensions that enhance existing features.

• Which features should be evolved (added, removed, refac-
tored)? Evaluating necessary changes based on usage trends
and feedback.

• Which similar features have been implemented across dif-
ferent forks? Detecting redundant implementations of the
same functionality across forks to unify efforts.

3.5.3 CI / CD questions. Feature changes can introduce issues in
configuration and CI/CD workflows. The following questions are
considered:

• Which features cause configuration errors? Analyzing con-
figuration issues introduced by feature modifications.

• Which configurations trigger new features in the framework?
Understanding how certain configurations lead to the acti-
vation of specific features.

• Which features fail more often in production? Identifying
features with high failure rates in real-world deployments.

• Which features behave differently in production compared to
development? Investigating discrepancies between develop-
ment and production environments.

• Which features introduce new CI/CD workflows? Understand-
ing how featuremodifications impact deployment processes.

3.6 Decision-making
Based on the analysis’s results, application engineers make in-
formed decisions to evolve the SPL. These decisions are grouped
into three main categories, aligned with the types of questions
addressed in the previous section.

3.6.1 Testing decisions. Testing-related analysis helps identify gaps
and weaknesses in feature validation. As a result, engineers may:

• Test feature: Improve or create test cases for features with
limited coverage or recurring issues.

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Feedback analysis in software product line forked developments SPLC’25, September 01–September 05, 2025, A Coruña, Spain

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

3.6.2 Feature evolution decisions. Feature-centric analysis reveals
opportunities to improve the variability model and the overall ar-
chitecture. Possible actions include:

• Add feature: Introduce new features identified in forks.
• Extend feature: Integrate enhancements observed in deriva-

tive developments.
• Refactor feature: Restructure features for better modularity

or maintainability.
• Split feature: Decompose large or coupled features into

smaller units.
• Delete feature: Remove redundant or obsolete features.
• Modify architecture: Apply structural changes motivated by

recurring design or integration issues.

3.6.3 CI/CD and configuration decisions. Findings related to con-
tinuous integration and deployment may lead to adjustments in
development workflows:

• Modify CI/CD pipeline: Adapt or extend the automation
process to accommodate new feature behaviors or resolve
integration failures.

All these actions are applied traceably and consistently, ensuring
that the original SPL evolves based on evidence gathered from
parallel developments.

4 Evaluation
This section assesses both the feasibility and scalability of the pro-
posed feature-centric feedback analysis method in the context of
SPLs. We applied the proposed methodology to empirical data ex-
tracted from GitHub repositories, constructing traceability maps
and feedback logs for analysis. The resulting analysis highlights ac-
tionable insights, including unmet testing requirements, candidate
features for refactoring, evidence of feature evolution, and trends in
CI/CD workflow adaptations. Results are obtained from an individ-
ual fork and a larger dataset of forks, showing that the approach can
handle both local and global SPL scenarios. Insights are presented
through quantitative summaries and visual representations.

4.1 Proof of concept
To assess the viability and effectiveness of our approach in a con-
trolled setting, we initially performed a proof-of-concept study on
a single fork of the target SPL1. This preliminary evaluation estab-
lished the foundation for subsequent large-scale analysis involving
multiple forks.

Unlike the full evaluation presented in Section 4.2, this case
study focuses solely on one development line and excludes the
construction of the feedback log. Instead, it centers on building a
traceability map of the form:

⟨feature, data source type, tag⟩

4.1.1 Data collection and storage. We extracted all commits, issues,
and pull requests from the selected fork using the GitHub API,
resulting in:

• 183 commits
1Repository: XXX. The repository has been anonymized and will be made public if
this paper is accepted.

• 41 issues
• 19 pull requests

The extracted data was serialized into structured JSON format
to enable systematic processing and analysis.

4.1.2 Traceability map construction. Feature identification was au-
tomated by leveraging the repository’s modular structure, specifi-
cally by parsing directory names under app/modules 2. Then, each
commit message, issue title, and pull request description was ana-
lyzed using keyword-based heuristics to detect semantic tags such
as test, fix, or extension. These tags were mapped to predefined
analysis categories.

Finally, traceability tuples were constructed by linking each tag
to the affected feature(s), based on modified file paths or GitHub
labels. We extracted 56 traceability tuples from this fork.

4.1.3 Analysis results. Using the resulting traceability map, we an-
swered the research questions outlined in Section 3.5. The following
summarizes key findings derived from the traceability analysis:

Testing-related insights.
• Which features require additional testing? Tags testing,

fix, and error were frequently associated with feature7,
feature3, and feature10.

• Which features rely heavily on mocks? The recurrence of
mock tags associated with feature7 and feature4 may
indicate design limitations or a high degree of inter-feature
coupling.

• Which features need refactoring? feature3 and feature7
were repeatedly tagged with refactor, highlighting testa-
bility and maintainability concerns.

Feature evolution insights.
• Which features are being extended? The most extended mod-

ules were feature7 and feature11, withmultiple commits
tagged as extension.

• Which features show signs of obsolescence? feature8 and
feature4 were mentioned in issues tagged obsolete, sug-
gesting that they might be candidates for removal.

• Which features vary across forks? Evidence of feature di-
vergence was identified, even within the scope of a single
fork, particularly in feature6 and feature28, where simi-
lar functionality was implemented via different strategies.

CI/CD-related insights.
• Which features caused configuration issues? Tags such as

config and setup were frequently linked to feature7,
feature23, and feature17, indicating deployment or pipeline
complexity.

• Which features introduced new models or configurations?
feature7, feature3, and feature11 were the primary
contributors to new configuration structures and models
within the fork.

These findings indicate that the proposed approach can yield
meaningful insights even when applied to an individual forked
development.
2The feature names in this evaluation have all been modified to featureX style for
anonymization purposes.

7

XXX


813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

SPLC’25, September 01–September 05, 2025, A Coruña, Spain Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

4.2 Evaluation with multiple forks
To evaluate the scalability and global reasoning capabilities of our
approach, we applied the full methodology, including feedback log
construction, to a dataset comprising 25 forks of the same SPL.

Each fork was independently processed in three steps: (1) ex-
tracting raw data from GitHub (commits, issues, pull requests), (2)
identifying features from the project structure (app/modules), and
(3) building traceability tuples. These tuples were then aggregated
into a unified feedback log, enabling cross-fork, feature-centric, and
time-aware analysis.

A total of 10,163 feedback entries were collected, covering 38
unique features across all forks.

4.2.1 Global analysis results. Based on this consolidated dataset,
we performed global analysis to answer the questions defined in
Section 3.5. The most relevant insights are summarized below:

• Testing questions:
– Features such as feature7, feature3, and feature12

show the highest need for additional testing, withmore
than 700 combined entries tagged as testing, fix, or
error.

– feature12 and feature7 also exhibit high mock us-
age, indicating complex dependencies and potential
design limitations.

– feature7, feature3, and feature10 appear in nu-
merous entries tagged as refactor, suggesting oppor-
tunities to improve testability.

• Feature questions:
– feature7, feature3, and feature12 are the most fre-

quently extended features, each with over 100 occur-
rences tagged as extension.

– feature7 also leads in entries tagged refactor and
obsolete, highlighting both active evolution and tech-
nical debt.

– Features like feature20, feature19, and feature17
appear in multiple forks with varying implementa-
tions.

• CI/CD questions:
– Features such as feature12, feature7, and feature23

are linked to configuration errors, based on issues
tagged config.

– feature7, feature11, and feature3 frequently intro-
duce new models and configuration patterns in CI/CD
workflows.

– feature7 also ranks highest in combined testing,
config, and model tags, reflecting its central role in
development activity.

The results suggest that the proposed method is capable of scal-
ing to real-world, multi-fork SPL scenarios and provides structured,
actionable insights to support SPL maintenance and evolution.

4.2.2 Visual feedback analysis. To complement the textual analysis
of the feedback log, we generated a log-scaled semantic activity
heatmap, as shown in Figure 4. It shows the relationship between
features and semantic tags. Each row is a feature. Each column
is a tag. Darker cells indicate more activity. We use a logarithmic

Figure 3: Temporal evolution of the most active features
across forks.

scale to enhance contrast. This visualization provides a high-level
overview of development patterns across all forks.

This heatmap is constructed directly from the feedback log en-
tries of the form ⟨𝑓 , 𝑑, ℓ, 𝑘, 𝑧⟩, where each row corresponds to a
feature and each column to a semantic tag (e.g., testing, fix, mock,
etc.). The intensity of each cell indicates the number of times that
feature appeared with that tag across all forks. To improve visual
contrast and emphasize both frequent and infrequent activity, we
applied a base-10 logarithmic transformation to the values.

This visualization enables:
• Identifying features with strong semantic diversity (i.e.,

involved in many types of development activity).
• Detecting features primarily associated with specific con-

cerns such as testing, modeling, or refactoring.
• Spotting semantically inactive features, which may indicate

stability or neglect.
The heatmap provides a concise and feature-centric summary

of SPL activity across forks, helping maintainers and researchers
prioritize integration, testing, or refactoring tasks.

Figure 3 shows the temporal evolution of the top 10 most active
features based on monthly occurrences in the feedback log. Each
line represents a feature’s activity over time. One feature (feature7)
dominates the others, demonstrating how our approach helps iden-
tify focal points of development. This visualization assists maintain-
ers in identifying high-impact features and allocating improvement
efforts based on activity density and temporal trends. A feature
is considered active if it accumulates many feedback log entries,
regardless of the semantic tag or data source. Frequent appearances
suggest that the feature is under development, maintenance, or
evolution across forks.

5 Threats to validity
We identify the following potential threats to the validity of our
proposal, along with mitigation strategies:

• Internal validity: imprecise mapping between files and fea-
tures. The assumption that modified files are directly associ-
ated with specific features may not always hold, especially
in systems with poor modularization. Mitigation: Manu-
ally validate a sample of mappings or use historical and
dependency analysis to strengthen associations.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Feedback analysis in software product line forked developments SPLC’25, September 01–September 05, 2025, A Coruña, Spain

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Figure 4: Log-scaled Semantic Activity Heatmap across features and tags.

• Construct validity: incomplete or inconsistent tagging. Tags
extracted from issues, commits, or pull requests may be
absent, ambiguous, or inconsistent. Mitigation: Combine
automatic tagging with manual curation, or train super-
vised models using a curated dataset.

• External validity: limited generalizability. The approach may
be tailored to specific types of repositories (e.g., GitHub-
based, open-source, well-documented projects). Mitigation:
Apply the method to diverse repositories (different lan-
guages, sizes, structures) to assess generalizability.

• Conclusion validity: biased interpretation of data. Decisions
derived from the analysis may be influenced by subjective
interpretation or coincidental correlations. Mitigation: De-
fine objective criteria for actions and maintain traceability
between data points and decisions.

• Ecological validity: limited applicability in real-world work-
flows. The proposed process might be difficult to adopt in

industrial settings or existing development workflows. Mit-
igation: Design the approach as a modular and integrable
tool compatible with current platforms and pipelines.

6 Discussion and limitations
This work has introduced a methodology for the automated collec-
tion of development-related information from SPL forks. A trace-
ability structure was designed to associate development activities
with specific features. The evaluation shows how this information
helps identify relevant aspects for the evolution of features, tests,
and CI/CD. However, the practical applicability depends on orga-
nizational dynamics, fork motivations, and alignment with SPL
workflows.

Although our proposal focuses on the technical aspects of feed-
back collection from forks, its successful adoption in industrial
settings depends heavily on organizational readiness. Prior studies

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

SPLC’25, September 01–September 05, 2025, A Coruña, Spain Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

have identified several obstacles to adopting SPL practices, includ-
ing organizational inertia, lack of tooling support, and resistance
to formal variability modeling [1, 6].

Similarly, adopting a feedback-driven evolution process, as pro-
posed here, requires organizations to:

• Ensure alignment between distributed teams working on
forks and the central SPL team.

• Establish governance structures to evaluate and accept feed-
back contributions from forks.

• Encourage practices such as structured tagging and disci-
plined use of version control metadata, which are prerequi-
sites for effective traceability.

Even technically robust processes may yield limited value if not
supported by adequate organizational practices and governance
structures. Forks differ in origin, purpose, and relevance. Some arise
from technical needs, while others reflect organizational factors [18,
30]. Understanding fork motivations is key to interpreting feedback.
Long-term divergent forks may be less relevant, while short-term
forks can provide valuable insights. Although our approach does
not distinguish motivations, future work could apply heuristics to
prioritize reintegration.

Feedback-driven SPL evolution, as proposed in this work, can
complement existing SPL workflows by (1) guiding variability
model evolution in domain engineering (e.g., refactoring or re-
moving features), (2) exposing configuration and implementation
issues in application engineering, and (3) surfacing feature-level
failures in DevOps for CI/CD integration. Our methodology must
be integrated as a modular analysis tool that complements existing
product line engineering (PLE) environments to enable this. Inte-
gration points may include feature modeling tools, configuration
management systems, and release planning workflows [6].

This work does not encompass the reintegration of collected
feedback into the SPL architecture, which remains as future work.
While we describe the format and structure of the feedback log,
converting this data into architectural or variability model changes
is left for future work. The approach assumes feature definitions
exist and are stable. In real cases, features may evolve or be reinter-
preted. The quality of insights depends on metadata consistency
and developer practices.

A critical limitation is the dependency on semantically rich com-
mits and descriptive pull requests, which are not guaranteed. Incon-
sistent or insufficient version control metadata may compromise
traceability and feedback accuracy. Addressing this may require
guidelines, templates, or validation. The proposal assumes a modu-
lar architecture linking artifacts to features. In practice, monolithic
systems may dilute these links, requiring static analysis or devel-
oper input to improve accuracy.
7 Related work
Medeiros et al. [28] propose studying feedback at the platform
level, enabling automatic tracking code generation and preserving
platform/variant separation. Their study links implicit feedback to
benefits such as feature model analysis, dependency detection, and
test prioritization. In contrast, our approach analyzes external forks,
focusing on indirect signals like commits and feature evolution.
Unlike Medeiros et al., we rely on structural changes rather than
usage data.

Shurui et al. introduce Infox, a methodology and automated
tool designed to identify and summarize features implemented in
software project forks through source code analysis, community
detection techniques, and information retrieval [43]. Infox creates
dependency graphs using static source code analysis and groups
related code fragments using community detection. It tags these sets
with keywords derived from commit messages, code, and comments.
Evaluation demonstrated a median accuracy of 90%. Unlike Infox,
our proposal already has localized features and studies the evolution
of their development.

Oscar Diaz et al. [15] propose to move implicit feedback col-
lection from variants to the platform in SPLs, using generative
mechanisms. It identifies SPL activities that can benefit from this
approach and assesses its feasibility through an exploratory study
with practitioners. This implicit feedback is studied in the use of
the products. In our proposal, we focus on collecting feedback in
the development of parallel SPLs, not on using a single product.

8 Conclusions and future work
This paper has presented a structured method for automating the
collection of technical feedback in forked SPLs. The approach for-
malizes a traceability structure that associates development artifacts
with SPL features via semantic tags. This supports feature-centric
analysis across testing, evolution, and CI/CD. The feedback log
facilitates SPL evolution by aggregating insights from parallel de-
velopment activities.

A notable strength of the method lies in its capacity to reestab-
lish traceable connections between decentralized fork activity and
the central SPL variability model. By consolidating activity across
forks, maintainers can coherently regain visibility and guide evolu-
tion. Its modular design and extensible tagging mechanism enable
adaptability to diverse project structures, while producing inter-
pretable outputs suitable for supporting maintenance and evolution
decisions.

Nonetheless, the approach presents several limitations that war-
rant further attention. The mapping assumes a clear file-feature
relationship, which may not hold in poorly modularized systems.
Furthermore, the effectiveness of semantic tagging is contingent
on the quality and consistency of metadata, which is often hetero-
geneous across repositories.

Future work will explore enhanced feature inference techniques
based on call graph analysis, dependency mining, and historical
code evolution. Another direction involves training supervised
learning models on curated datasets to improve the accuracy and
consistency of semantic tag assignment.

In summary, development activity within forked repositories
constitutes a valuable and largely untapped source of structured
feedback. Making this feedback explicit and traceable helps main-
tainers benefit from distributed innovation. The proposed approach
lays the groundwork for automated, evidence-based tools that sup-
port the evolution and maintenance of SPL ecosystems.

Material
Supplementary material to this article will be made public after
acceptance. It contains information that could reveal the identity
of the authors, and it is not possible to anonymise it without com-
promising its integrity.

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Feedback analysis in software product line forked developments SPLC’25, September 01–September 05, 2025, A Coruña, Spain

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

References
[1] 2001. Software product lines: practices and patterns. Addison-Wesley Longman

Publishing Co., Inc., USA.
[2] Development Apache, Audris Mockus, Roy Fielding, and James Herbsleb. 2002.

Two Case Studies of Open Source Software Development: Apache and Mozilla.
ACM Transactions on Software Engineering and Methodology 11 (09 2002). doi:10.
1145/567793.567795

[3] JakobAxelsson. 2009. Evolutionary architecting of embedded automotive product
lines: An industrial case study. In 2009 Joint Working IEEE/IFIP Conference on
Software Architecture European Conference on Software Architecture. 101–110.
doi:10.1109/WICSA.2009.5290796

[4] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, Henk Obbink, and Klaus
Pohl. 2001. Variability Issues in Software Product Lines. 13–21. doi:10.1007/3-
540-47833-7_3

[5] John Businge, Moses Openja, Sarah Nadi, and Thorsten Berger. 2022. Reuse
and maintenance practices among divergent forks in three software ecosystems.
Empirical Software Engineering 27, 2 (2022), 54. doi:10.1007/s10664-021-10078-2

[6] Cagatay Catal. 2009. Barriers to the adoption of software product line engineering.
SIGSOFT Softw. Eng. Notes 34, 6 (Dec. 2009), 1–4. doi:10.1145/1640162.1640164

[7] Ana Eva Chacón-Luna, Antonio Manuel Gutiérrez, José A. Galindo, and David
Benavides. 2020. Empirical software product line engineering: A systematic
literature review. Information and Software Technology 128 (2020), 106389. doi:10.
1016/j.infsof.2020.106389

[8] Katharine Chen, Maria Toro-Moreno, and Arvind Subramaniam. 2025. GitHub
is an effective platform for collaborative and reproducible laboratory research.
ArXiv (02 2025).

[9] Siyue Chen, Loek Cleophas, Sandro Schulze, and Jacob Krüger. 2024. Use the
Forks, Look! Visualizations for Exploring Fork Ecosystems. In 2024 IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER).
993–1004. doi:10.1109/SANER60148.2024.00107

[10] Sekhar Chittala. 2024. Enhancing Developer Productivity Through Automated
CI/CD Pipelines: A Comprehensive Analysis. International Journal of Computer
Engineering Technology 15 (10 2024), 882–891. doi:10.5281/zenodo.13929524

[11] Zadia Codabux, Fatemeh Fard, Roberto Verdecchia, Fabio Palomba, Dario Nucci,
and Gilberto Recupito. 2025. Teaching Mining Software Repositories. doi:10.
48550/arXiv.2501.01903

[12] Cleidson R. B. de Souza, Emilie Ma, Jesse Wong, Dongwook Yoon, and Ivan
Beschastnikh. 2024. Revealing Software Development Work Patterns with PR-
Issue Graph Topologies. Proc. ACM Softw. Eng. 1, FSE, Article 106 (July 2024),
22 pages. doi:10.1145/3660813

[13] Oscar Díaz, Leticia Montalvillo, Raul Medeiros, Maider Azanza, and Thomas
Fogdal. 2022. Visualizing the customization endeavor in product-based-evolving
software product lines: a case of action design research. Empirical Software
Engineering 27, 3 (2022), 75.

[14] Jane Doe, Alex Johnson, and Adebis Samuel. 2025. Introduction to GitHub
Actions: Building and Automating Workflows. (03 2025).

[15] Oscar Díaz, Raul Medeiros, and Mustafa Al-Hajjaji. 2024. How can feature usage
be tracked across product variants? Implicit Feedback in Software Product Lines.
Journal of Systems and Software 211 (2024), 112013. doi:10.1016/j.jss.2024.112013

[16] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolás Serrano. 2025.
DevOps 2.0. IEEE Software 42 (03 2025), 24–32. doi:10.1109/MS.2025.3525768

[17] Floris Erich, Chintan Amrit, and Maya Daneva. 2014. Report: DevOps Literature
Review. (10 2014). doi:10.13140/2.1.5125.1201

[18] Neil A. Ernst, Steve Easterbrook, and John Mylopoulos. 2010. Code forking
in open-source software: a requirements perspective. arXiv:1004.2889 [cs.SE]
https://arxiv.org/abs/1004.2889

[19] Aleksander Fabijan, Pavel Dmitriev, Helena Holmström Olsson, and Jan Bosch.
2017. The Evolution of Continuous Experimentation in Software Product
Development: From Data to a Data-Driven Organization at Scale. In 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE). 770–780.
doi:10.1109/ICSE.2017.76

[20] Dimitris Giamos, Olivier Doucet, and Pierre-Majorique Léger and. 2024.
Continuous Performance Feedback: Investigating the Effects of Feedback
Content and Feedback Sources on Performance, Motivation to Improve
Performance and Task Engagement. Journal of Organizational Behav-
ior Management 44, 3 (2024), 194–213. doi:10.1080/01608061.2023.2238029
arXiv:https://doi.org/10.1080/01608061.2023.2238029

[21] Orlena Gotel, Jane Cleland-Huang, Jane Huffman Hayes, Andrea Zisman, Alexan-
der Egyed, Paul Grünbacher, Alex Dekhtyar, Giuliano Antoniol, JonathanMaletic,
and Patrick Mäder. 2012. Traceability Fundamentals. Springer London, London,
3–22. doi:10.1007/978-1-4471-2239-5_1

[22] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. 2012. Evolving
Delta-Oriented Software Product Line Architectures, Vol. 7539. 183–208. doi:10.
1007/978-3-642-34059-8_10

[23] Ahmed E. Hassan. 2008. The road ahead for Mining Software Repositories. In
2008 Frontiers of Software Maintenance. 48–57. doi:10.1109/FOSM.2008.4659248

[24] Yash Jani. 2023. Implementing Continuous Integration and Continuous Deploy-
ment (CI/CD) in Modern Software Development. International Journal of Science
and Research (IJSR) 12 (06 2023), 2984–2987. doi:10.21275/SR24716120535

[25] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. 2014. The promises and perils of mining GitHub.
In Proceedings of the 11th Working Conference on Mining Software Repositories
(Hyderabad, India) (MSR 2014). Association for Computing Machinery, New York,
NY, USA, 92–101. doi:10.1145/2597073.2597074

[26] Christoph Knieke, Andreas Rausch, Mirco Schindler, Arthur Strasser, and
Martin Vogel. 2022. Managed Evolution of Automotive Software Product
Line Architectures: A Systematic Literature Study. Electronics 11, 12 (2022).
doi:10.3390/electronics11121860

[27] Walid Maalej, Maelnaz Nayebi, Timo Johann, and Guenther Ruhe. 2015. Toward
Data-Driven Requirements Engineering. IEEE Software 33 (01 2015), 48–56.
doi:10.1109/MS.2015.153

[28] Raul Medeiros, Oscar Díaz, and David Benavides. 2023. Unleashing the Power of
Implicit Feedback in Software Product Lines: Benefits Ahead. In Proceedings of the
22nd ACM SIGPLAN International Conference on Generative Programming: Con-
cepts and Experiences (Cascais, Portugal) (GPCE 2023). Association for Computing
Machinery, New York, NY, USA, 113–121. doi:10.1145/3624007.3624058

[29] Andreas Metzger and Klaus Pohl. 2014. Software product line engineering and
variability management: achievements and challenges. In Future of Software En-
gineering Proceedings (Hyderabad, India) (FOSE 2014). Association for Computing
Machinery, New York, NY, USA, 70–84. doi:10.1145/2593882.2593888

[30] Linus Nyman. 2015. Understanding Code Forking in Open Source Software: An
examination of code forking, its effect on open source software, and how it is viewed
and practiced by developers. Ph. D. Dissertation. Hanken School of Economics.

[31] Jakub Perdek and Valentino Vranic. 2025. Fully Automated Software Product
Line Evolution With Diverse Artifacts. IEEE Access 13 (2025), 27325 – 27358.
doi:10.1109/ACCESS.2025.3539868 Cited by: 0; All Open Access, Gold Open
Access.

[32] Klaus Pohl, Gunther Böckle, and Frank van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer.

[33] Mohammad Masudur Rahman and Chanchal K. Roy. 2014. An insight into the
pull requests of GitHub. In Proceedings of the 11th Working Conference on Mining
Software Repositories (Hyderabad, India) (MSR 2014). Association for Computing
Machinery, New York, NY, USA, 364–367. doi:10.1145/2597073.2597121

[34] Julia Rubin, Andrei Kirshin, Goetz Botterweck, and Marsha Chechik. 2012. Man-
aging forked product variants. In Proceedings of the 16th International Software
Product Line Conference - Volume 1 (Salvador, Brazil) (SPLC ’12). Association
for Computing Machinery, New York, NY, USA, 156–160. doi:10.1145/2362536.
2362558

[35] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. 2017. Continuous
Integration, Delivery and Deployment: A Systematic Review on Approaches,
Tools, Challenges and Practices. IEEE Access 5 (2017), 3909–3943. doi:10.1109/
ACCESS.2017.2685629

[36] Venkata Mohit Tamanampudi. 2024. End-to-End ML-Driven Feedback Loops
in DevOps Pipelines. World Journal of Advanced Engineering Technology and
Sciences 13 (09 2024), 340–354. doi:10.30574/wjaets.2024.13.1.0424

[37] Mohammad Tanhaei, Jafar Habibi, and Seyed-Hassan Mirian-Hosseinabadi. 2016.
Automating feature model refactoring: A Model transformation approach. Infor-
mation and Software Technology 80 (2016), 138–157. doi:10.1016/j.infsof.2016.08.
011

[38] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. 2014. FeatureIDE: An extensible framework for feature-
oriented software development. Science of Computer Programming 79 (2014),
70–85. doi:10.1016/j.scico.2012.06.002 Experimental Software and Toolkits (EST
4): A special issue of the Workshop on Academic Software Development Tools
and Techniques (WASDeTT-3 2010).

[39] Andrii Tkalich, Eduards Klotins, Trygve Sporsem, et al. 2025. User feedback
in continuous software engineering: revealing the state-of-practice. Empirical
Software Engineering 30, 79 (2025). doi:10.1007/s10664-024-10557-2

[40] Anastasiia Tkalich, Eriks Klotins, Tor Sporsem, Viktoria Stray, Nils Brede Moe,
and Astri Barbala. 2024. User Feedback in Continuous Software Engineering:
Revealing the State-of-Practice. arXiv:2410.07459 [cs.SE] https://arxiv.org/abs/
2410.07459

[41] Mariot Tsitoara. 2020. Beginning Git and GitHub: A Comprehensive Guide to
Version Control, Project Management, and Teamwork for the New Developer. doi:10.
1007/978-1-4842-5313-7

[42] Melina Vidoni. 2021. A systematic process for Mining Software Repositories:
Results from a systematic literature review. Information and Software Technology
(12 2021), 106791. doi:10.1016/j.infsof.2021.106791

[43] Shurui Zhou, Ştefan Stănciulescu, Olaf Leßenich, Yingfei Xiong, Andrzej Wą-
sowski, and Christian Kästner. 2018. Identifying features in forks. In Proceedings
of the 40th International Conference on Software Engineering (Gothenburg, Swe-
den) (ICSE ’18). Association for Computing Machinery, New York, NY, USA,
105–116. doi:10.1145/3180155.3180205

11

https://doi.org/10.1145/567793.567795
https://doi.org/10.1145/567793.567795
https://doi.org/10.1109/WICSA.2009.5290796
https://doi.org/10.1007/3-540-47833-7_3
https://doi.org/10.1007/3-540-47833-7_3
https://doi.org/10.1007/s10664-021-10078-2
https://doi.org/10.1145/1640162.1640164
https://doi.org/10.1016/j.infsof.2020.106389
https://doi.org/10.1016/j.infsof.2020.106389
https://doi.org/10.1109/SANER60148.2024.00107
https://doi.org/10.5281/zenodo.13929524
https://doi.org/10.48550/arXiv.2501.01903
https://doi.org/10.48550/arXiv.2501.01903
https://doi.org/10.1145/3660813
https://doi.org/10.1016/j.jss.2024.112013
https://doi.org/10.1109/MS.2025.3525768
https://doi.org/10.13140/2.1.5125.1201
https://arxiv.org/abs/1004.2889
https://arxiv.org/abs/1004.2889
https://doi.org/10.1109/ICSE.2017.76
https://doi.org/10.1080/01608061.2023.2238029
https://arxiv.org/abs/https://doi.org/10.1080/01608061.2023.2238029
https://doi.org/10.1007/978-1-4471-2239-5_1
https://doi.org/10.1007/978-3-642-34059-8_10
https://doi.org/10.1007/978-3-642-34059-8_10
https://doi.org/10.1109/FOSM.2008.4659248
https://doi.org/10.21275/SR24716120535
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.3390/electronics11121860
https://doi.org/10.1109/MS.2015.153
https://doi.org/10.1145/3624007.3624058
https://doi.org/10.1145/2593882.2593888
https://doi.org/10.1109/ACCESS.2025.3539868
https://doi.org/10.1145/2597073.2597121
https://doi.org/10.1145/2362536.2362558
https://doi.org/10.1145/2362536.2362558
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/10.30574/wjaets.2024.13.1.0424
https://doi.org/10.1016/j.infsof.2016.08.011
https://doi.org/10.1016/j.infsof.2016.08.011
https://doi.org/10.1016/j.scico.2012.06.002
https://doi.org/10.1007/s10664-024-10557-2
https://arxiv.org/abs/2410.07459
https://arxiv.org/abs/2410.07459
https://arxiv.org/abs/2410.07459
https://doi.org/10.1007/978-1-4842-5313-7
https://doi.org/10.1007/978-1-4842-5313-7
https://doi.org/10.1016/j.infsof.2021.106791
https://doi.org/10.1145/3180155.3180205


1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

SPLC’25, September 01–September 05, 2025, A Coruña, Spain Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

[44] Shurui Zhou, Bogdan Vasilescu, and Christian Kästner. 2020. How has forking
changed in the last 20 years? a study of hard forks on GitHub. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul,

South Korea) (ICSE ’20). Association for Computing Machinery, New York, NY,
USA, 445–456. doi:10.1145/3377811.3380412

12

https://doi.org/10.1145/3377811.3380412

	Abstract
	1 Introduction
	2 Background
	2.1 Feedback analysis and DevOps practices
	2.2 Mining software repositories
	2.3 Software product line evolution

	3 Automatic feedback collection
	3.1 Initial versions of forks
	3.2 Data source
	3.3 Data processing
	3.4 Feedback log
	3.5 Analysis
	3.6 Decision-making

	4 Evaluation
	4.1 Proof of concept
	4.2 Evaluation with multiple forks

	5 Threats to validity
	6 Discussion and limitations
	7 Related work
	8 Conclusions and future work
	References

