
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

On the Effect of Feature Reduction on Energy Consumption:
An Exploratory Study

Anonymous Author(s)
∗

Abstract
Energy consumption has become a growing concern in the pursuit

of a more sustainable software industry, particularly in advocating

for its reduction. In the last decade, this issue has been increasingly

investigated by the software engineering community. However, few

studies have investigated it in configurable systems that can embed

thousands of implemented features. As configurable systems be-

come more complex, feature reduction can help focus on essential

features while eliminating bloated and unnecessary ones. Although

several studies have explored how feature interactions and runtime

performance affect energy consumption, none, to our knowledge,

have studied the impact of feature reduction. This paper fills this

gap. In particular, we investigate how both on-demand and built-in
feature reduction affect the energy consumption of configurable sys-

tems. On-demand reduction allows users to retain only the features

necessary for their specific usage. In contrast, built-in reduction

provides a predefined set of features tailored to address a fixed set

of usage. We conducted a first exploratory study using 28 programs

from three systems that offer built-in feature reduction, namely

ToyBox, BusyBox, and GNU, along with 6 GNU programs debloated

on-demand with Chisel, Debop, and Cov tools. In our results, built-

in feature reduction led to statistically significant energy decreases

in 7% of the cases, while on-demand reduction, despite achieving

energy decreases in 67% of cases, showed no statistical significance.

However, when energy consumption increased, it was often more

substantial than the reductions observed (occurring in 25% of built-

in cases and 11% of on-demand cases) showing the complex and

sometimes counterintuitive interplay between feature reduction

and energy. Additionally, the observed strong correlation between

energy consumption and execution time motivates a shift from

traditional debloating goals, centered on binary size/attack surface,

to energy-aware strategies that prioritize performance concerns.

Finally, we provide an in depth analysis and discuss the perspective.

CCS Concepts
• Software and its engineering → Software performance; •
General and reference → Empirical studies.

Keywords
energy consumption, configurable systems, feature reduction

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPLC’25, September 01–September 05, 2025, A Coruña, Spain
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Anonymous Author(s). 2018. On the Effect of Feature Reduction on Energy

Consumption: An Exploratory Study. In Proceedings of 29th International
Systems and Software Product Line Conference (SPLC’25). ACM, New York,

NY, USA, 12 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Energy consumption is nowadays a growing concern in the pursuit

of a more sustainable software industry [5, 13, 14, 18, 26, 43, 45, 50].

A report from the ShiftProject
1
and others has raised environmental

concerns regarding Information and Communication Technology

(ICT) and called for reducing energy consumption. During the past

decade, this issue has been increasingly investigated by the software

engineering community (e.g., [9, 20, 34, 35, 37, 38, 41, 45]).
As software becomes more essential to our daily lives, reducing

its energy consumption has become essential for sustainable soft-

ware development. This paper focuses on configurable systems that

allow developers to customize variants and use a subset of imple-

mented features by activating or deactivating configuration options.
However, as more features are added over time, configurable sys-

tems can become increasingly complex. For example, Linux kernel

has around 15 thousand options in version 5.8 [1, 28].

One way to manage the increasing complexity of a configurable

system is through feature reduction, which has been studied for

several purposes, such as for defect and bug prediction [27, 47, 48].

Several studies have explored the topic of energy consumption for

configurable systems, including the impact of feature interactions

on energy consumption [17], the use of static analysis to evalu-

ate energy consumption in configurable systems [10, 11], and the

correlation between execution time and energy consumption [52].

However, to our knowledge, no work has studied the impact of

feature reduction of configurable systems on energy consumption.

This paper addresses this gap by investigating how feature reduc-

tion can impact the energy footprint of configurable systems. We

distinguish two types of feature reduction in configurable systems,

as shown in Figure 1. First, built-in feature reduction, where devel-
opers create and use alternative systems with fewer features. These

systems are made to be simpler or smaller. For example, ToyBox
and BusyBox are re-implementations of GNU software with a re-

duced set of features (shown on the right side of Figure 1). Second,

on-demand feature reduction is when developers debloat software

to remove unnecessary features. Several research tool prototypes,

such as Chisel [19], Debop [53], and Cov [54] can assist in this

process. For example, GNU programs can hopefully be debloated by

such tools to reduce their features (see the left part of Figure 1).

Whether developers deal with built-in or on-demand feature

reduction, they end up using configurable software with reduced

binary sizes and fewer features. The goal of this paper is to inves-

tigate and reveal the effect of both types of feature reduction on

1
https://theshiftproject.org/wp-content/uploads/2019/03/Lean-ICT-Report_The-

Shift-Project_2019.pdf

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://theshiftproject.org/wp-content/uploads/2019/03/Lean-ICT-Report_The-Shift-Project_2019.pdf
https://theshiftproject.org/wp-content/uploads/2019/03/Lean-ICT-Report_The-Shift-Project_2019.pdf

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SPLC’25, September 01–September 05, 2025, A Coruña, Spain Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

energy consumption in configurable software. We hypothesize that
feature reduction impacts energy consumption (𝐻1), as the reduc-

tion of features affects the code that is executed and can impact

energy use. To explore this, we conducted an exploratory study

to examine how both built-in and on-demand feature reduction

impact energy consumption. For built-in feature reduction, we first

selected three configurable systems, namely GNU [16], ToyBox [29]

and BusyBox [51], along with 28 programs, each included in all

three systems. For example, the program mkdir is available in GNU,
ToyBox, and BusyBox, with different implementations and a reduced

set of features in the last two systems. For on-demand feature re-

duction, we selected 6 GNU programs from Xin et al. [54] that have

been debloated with three debloating tools, namely Chisel [19],

Debop [53], and Cov [54]. For example, the program mkdir has been
debloated by the three aforementioned tools, resulting in three vari-

ants of mkdir with a reduced set of features. Finally, we measured

energy consumption and analyzed its correlation with the config-

uration options, binary size, and execution time of the programs.

Programs were selected based on our ability to successfully compile

and execute all three debloated variants, ensuring valid outputs for

the common set of features used during debloating. The findings

suggest that built-in feature reduction led to statistically significant

energy decreases in ≈ 7% of cases, while on-demand reduction

achieved energy decreases in ≈ 67% of cases, but without statistical

significance. However, both approaches showed significant energy

increases in some cases: 25% for built-in and ≈ 11% for on-demand.

These results highlight the complex relationship between feature

reduction and energy consumption. Additionally, we found a weak

correlation between binary size, configuration options, and energy

consumption, suggesting that smaller binaries and fewer options

do not necessarily result in lower energy consumption. However,

execution time showed a strong correlation, making it a good proxy

for energy consumption. These findings are consistent with prior

observations at the scale of entire configuration spaces [52]. The

contributions of the paper are as follows:

• We distinguish two types of feature reduction and propose

a terminology for them: built-in feature reduction for alter-

native program implementations with fewer features, and

on-demand feature reduction for debloated programs.

• A novel study exploring the impact of both built-in and

on-demand feature reduction on energy consumption in

configurable software systems, which resulted to be nu-

anced with potential reductions (≈ 64%) but also notable

increases (≈ 36%) in some cases. The amount of energy

consumed depends on the approach used and the program.

• We identify key factors influencing energy consumption,

showing that execution time is a stronger predictor than bi-

nary size or the number of configuration options, providing

valuable insights for future debloating strategies.

• A replication package is also made available online
2
to

facilitate replication and further experimentation.

The remainder of this paper is structured as follows. Section 2 in-

troduces background on feature reduction and energy consumption

techniques. Section 3 outlines our experimental approach. Section 4

2
https://anonymous.4open.science/r/bloat-energy-consumption-836C

Figure 1: On-demand vs. Built-in feature reduction.

presents the methodology used to study the impact of built-in fea-

ture reduction on energy consumption, with corresponding results

in section 5. Section 6 describes the on-demand feature reduction

approach, and section 7 discusses its results. Section 8, provides

an in-depth analysis and discusses key insights. Section 9 covers

threats to validity and section 10 reviews related work. Finally,

section 11 concludes the paper with perspectives for future work.

2 Background
This section discusses the methods used to measure energy con-

sumption in configurable systems with reduced features.

2.1 Feature Reduction
Configurable software systems offer several features that activate

specific functionalities or impact non-functional properties (e.g.,
execution time, accuracy, etc.). The goal of feature reduction is to

prioritize core features that provide the most value to users while

eliminating code that does not significantly contribute to the overall

software system or its qualities. For instance, feature reduction can

simplify the system and ensure it adheres to a given usage by

removing unnecessary source code, as discussed in [21].

We distinguish two approaches for achieving feature reduction,

as shown in Figure 1, namely built-in feature reduction and on-
demand feature reduction. The first approach, built-in feature re-

duction, requires developers to create alternative systems with

fewer features. Typically, this includes alternative configurable sys-

tems with different implementations of a reduced set of features.

The right part of Figure 1 shows how ToyBox and BusyBox are

re-implementations of a reduced set of GNU features. The second

approach, on-demand feature reduction, is when developers in-

tentionally debloat a configurable system to remove unnecessary

features from it for different purposes. This results in multiple de-

bloated variants with a reduced set of features, compared to the

original system that includes all features. The left part of Figure 1

illustrates how GNU can be debloated to reduce its features using

debloating tools such as Chisel [19], Debop [53], and Cov [54]. For

example, the mkdir program is in the GNU configurable system,

which has a binary size of 420.60 KiB and 7 runtime configuration

options. A built-in feature reduction of mkdir exists in both ToyBox
and BusyBox as alternative implementations. The two alternative

implementations have binary sizes of 18.60 KiB and 18.70 KiB, re-

spectively, along with 3 and 2 configuration options. Moreover,

https://anonymous.4open.science/r/bloat-energy-consumption-836C

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

On the Effect of Feature Reduction on Energy Consumption: An Exploratory Study SPLC’25, September 01–September 05, 2025, A Coruña, Spain

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

with debloating tools, one may debloat mkdir in GNU. For example,

two different debloated variants of mkdir can be produced using

the Chisel tool [19], based on usage profiles describing the use of

2 and 3 configuration options, respectively. Its debloated programs

(used in this study) have binary sizes of 22.90 KiB and 16.50 KiB.

Whether built-in or on-demand, the goal of developers and users

is to reduce binary size, configuration options, and attack surface of

programs [19]. However, it is unclear how feature reduction impacts

energy consumption and whether it correlates with other non-

functional properties (e.g., binary size). In this paper, we explore the

impact of both types of feature reduction on energy consumption.

2.2 Energy Consumption Methods
The methods for measuring energy consumption in IT have evolved

over time, shifting from hardware to software. Indeed, software en-

ergy consumption monitoring through hardware introduces certain

challenges, including the requirement of physical instrumentation

and the high level of granularity (i.e., measure at the level of the

entire hardware system). This section provides an overview of

software energy measurement.

Since 2011, Intel has implemented the Running Average Power

Limit (RAPL) in their Central Processing Units (CPUs) to provide

a more reliable measurement interface than hardware power met-

ters [12]. RAPL reports energy consumption values in joules (J),

more precisely in micro-joules (𝜇J), for different CPU elements

(cores, integrated GPU, socket, and RAM). Intel CPUs have a Model-

Specific Register (MSR) that updates at a high frequency (1 000 Hz)

where the RAPL value is stored [23]. In this way, RAPL value is ac-

cessible through the operating system (OS) using the MSR, making

the measurement easier and more reliable since it is directly linked

to the CPU.

Several tools and prototypes are available
3
to capture the RAPL

value to measure application energy consumption, such as Intel

Power Gadget, Intel PowerLog, Perf, PowerTOP, PowerStat, Lik-

wid, and Jouleit 4. They mostly rely on power monitors or energy

profilers. However, Intel Power Gadget, PowerTOP, PowerStat, and

Likwid are unsuitable for our needs as they cannot measure process

consumption during execution. Although Intel PowerLog supports

this functionality, it is only compatible with Windows. Perf, on

the other hand, does not report RAPL values in a usable format

like CSV or JSON. Among the available tools, Jouleit is the most

suitable option in our context. It has the ability to monitor a process,

automatically execute and monitor it multiple times, and generate

reports in CSV format. Furthermore, Jouleit is compatible with

Linux, making it the ideal choice for our needs.

3 Experimental Approach
In this section, we outline the research questions and the experi-

mental approach of our study.

3.1 Research Questions
To answer the objective of feature reduction’s impact on energy

consumption, we pose the following research questions.

3
https://luiscruz.github.io/2021/07/20/measuring-energy.html

4
https://github.com/powerapi-ng/jouleit

Built-in feature reduction impact. We pose the following three

research questions to examine how built-in feature reduction affects

energy consumption in alternative software implementations.

𝑅𝑄1.1 : How does the binary size of programs with built-in
feature reduction impact energy consumption, and
what is the correlation between the two?

𝑅𝑄1.2 : How does the number of configuration options of
programs with built-in feature reduction impact en-
ergy consumption, and what is the correlation?

𝑅𝑄1.3 : How does the execution time of programs with built-
in feature reduction impact energy consumption, and
what is the correlation?

On-demand feature reduction impact. Next, we explore how pro-

gram debloating (i.e., on-demand reduction) impacts energy con-

sumption and whether findings on alternative implementations

extend to debloated programs. From this, we pose two research

questions.

𝑅𝑄2.1 : How does the binary size of programs with on-
demand feature reduction impact energy consump-
tion, and what is the correlation?

𝑅𝑄2.2 : How does the execution time of programs with on-
demand feature reduction impact energy consump-
tion, and what is the correlation?

We could not investigate the correlation with configuration op-

tions, as this information was unavailable for the debloated pro-

grams. Although, in theory, a debloated program should only handle

the desired feature, there is no guarantee that the entire input space

for a feature is covered.

3.2 Dependent and Independent Variables
Our experiment focuses on quantifying the impact of feature re-

duction on energy consumption in configurable software systems.

In this context, the independent variable under our control is the

feature reduction itself, specifically the executable binary size and the
number of run-time configuration options in software programs, both

before and after feature reduction. To address our research ques-

tions, we observe and measure two dependent variables, namely

the execution time and energy consumption of software programs.

3.3 Measurement Setup
We measured software power consumption using the RAPL [25]

value, which specifically relates to the Package-Level Power (PSYS),

representing the entire CPU, including cores, cache memory con-

troller, and iGPU. The RAPL values are captured using a tool from

the PowerAPI
5
toolkit [7] called Jouleit 6. All energy consumption

measurements are expressed in micro-joules (𝜇J).

However, there is still the issue of effectively communicating the

meaning of the measured energy consumption. While RAPL values

are provided in micro-joules through the CPU interface, this unit

may not be easily understandable for developers and end-users. To

make energy consumption values more meaningful, we propose

converting them into the time of use of various devices commonly

used on a daily basis, thereby associating them with real-world

5
https://powerapi.org/

6
https://github.com/powerapi-ng/jouleit

https://luiscruz.github.io/2021/07/20/measuring-energy.html
https://github.com/powerapi-ng/jouleit
https://powerapi.org/
https://github.com/powerapi-ng/jouleit

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

SPLC’25, September 01–September 05, 2025, A Coruña, Spain Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

devices familiar to developers and end-users. Specifically, we chose

to convert them to the time of use for three devices: an HDD Seagate

BarraCuda 3.5” 1 TB 7 200 RPM (5 W)
7
, an NVIDIA GPU RTX4080

(320 W)
8
, and a Phillips LED light bulb (10.5 W)

9
.

To ensure reproducibility and minimize biases, we followed the

best practices outlined by Ournani et al. [36]. In particular, to ensure

accurate measurements, we considered the following factors:

• We chose a CPU with a low TDP (15 W). CPUs with lower

TDP values have less variability in powermeasurements [36].

• CPU performance options (C-States, Hyper-Threading and

TurboBoost) significantly impact the standard deviation

during energy consumption measurement [2, 36]. There-

fore, we disabled these options in both the BIOS and OS.

• The installed OS (Lubuntu) is a lightweight Ubuntu distri-

bution, chosen to minimize its impact on the measurements.

Additionally, we disabled the network service to avoid in-

terference from network traffic [36].

Moreover, Jouleit also allows us to collect execution time data.

This is done by capturing a timestamp (using the date command)

immediately before executing the program and another timestamp

right after the execution completes. The difference between these

two timestamps gives the precise execution time of the program.

Finally, we used a Dell Latitude 7490 machine with an Intel Core

i7-8650U processor, which has a Thermal Design Power (TDP) of

15 W. The machine is equipped with 32 GB of DDR4 RAM and runs

Linux Lubuntu 22.04.2 LTS with kernel version 5.19.0-45-generic.

4 Methodology for Built-in Feature Reduction
experiment

This section details our initial experiment conducted on software

systems with built-in feature reduction.

4.1 Subject Systems
To obtain a representative set of software systems with built-in

feature reduction, we selected three configurable software systems:

GNU [16], ToyBox [29], and BusyBox [51]. The GNU core programs

include essential file, shell, and text manipulation utilities that are

typically available on every operating system, which we refer to as

programs. Examples of these programs include mkdir, which con-

catenates and write files, ls, which lists directory contents, and mv,
which moves or renames files and directories. We chose these pro-

grams because they are well-known and used daily by millions of

users. Additionally, they are often used to evaluate different debloat-

ing approaches in software engineering [4, 8, 19, 53]. Importantly,

the programs in both ToyBox and BusyBox represent a deliberate ap-
plication of feature reduction (i.e., built-in) of GNU programs. These

alternative programs were specifically developed to reduce binary

size, configuration space, and to simplify implementation, while

improving execution time.

4.2 Pre-experiment Settings
First, we built all programs included by default in each set, specifi-

cally in the recent versions: GNU version 9.3, ToyBox version 0.8.9,

7
Seagate BarraCuda 3.5” datasheet

8
NVIDIA RTX4080 datasheet

9
Phillips LED light bulb datasheet

and BusyBox version 1.36.0. Then, we extracted only the programs

common to all three systems, resulting in a set of 75 shared pro-

grams. From this set, we selected 28 programs based on diversity

in binary size and the number of configuration options.

Let S represent the set of 28 selected subject programs. Each

program 𝑝 ∈ S has its own executable in GNU, ToyBox, and BusyBox,
differing in binary size and the number of run-time configuration

options available. Next, we enumerated all configuration options

for each implementation of 𝑝 . For example, the cat executable is
185 KiB with 12 options in GNU, while in ToyBox, it is 18 KiB with 4

options, and in BusyBox, it is 18 KiB with 6 options.

4.3 Experiment Settings
Using the 28 selected subject programs, we measured both the en-

ergy consumption and execution time of each program. To measure

energy consumption, we used Jouleit.
For each 𝑝 ∈ S, we selected two valid configurations 𝑐1, 𝑐2 ∈ C

along with a valid input 𝑖 ∈ I. Here, C represents the configuration

space of program 𝑝 , encompassing all feasible configurations or

potential combinations of configuration options, and I denotes

the set of possible inputs for the program. Configurations 𝑐1 and

𝑐2 were selected based on the availability of their configuration

options in each of the respective implementations of 𝑝 within GNU,
ToyBox, and BusyBox. Specifically, we used purposive sampling [32]

to select two common configurations for each program, ranging

from none to multiple options depending on the program. This

selection was based on the documentation, our expertise, and a

carefully chosen input 𝑖 , when required. For instance, Listing 1

shows the ls program in GNU with configurations 𝑐1 =−𝑅 and

𝑐2 =−𝑅𝑎𝑙 , and input = /𝑝𝑎𝑡ℎ/𝑡𝑜/𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 used in our experiment.

The same configurations and input(s) were then applied to the

respective implementations of 𝑝 (e.g., of ls) in ToyBox and BusyBox.

1 $. / GNU/ l s -R /path/to/directory // First configuration

2 $. / GNU/ l s -Ral /path/to/directory // Second configuration

Listing 1: ./GNU/ls with 2 configurations and input used

Next, we compared the binary size and the number of run-time

configuration options of the selected programs from GNU, ToyBox,
and BusyBox. Using the GNU implementation as the baseline, Fig-

ure 2 shows that each counterpart in ToyBox and BusyBox has a

smaller binary size and fewer run-time options. On average, the

28 selected programs in ToyBox exhibit a 92% reduction in binary

size and 64% fewer options, while in BusyBox, they show a 93%

reduction in binary size and 66% fewer options compared to GNU.
These data confirm that each selected program for the experiment

undergoes a genuine built-in feature reduction.
To prevent side effects, all experiments were run 10 times se-

quentially as the only active processes on the workstation (see Sec-

tion 3.3). Additionally, all subjects, configurations, and data are

available online
10

for reproducibility.

5 Results of Built-in Feature Reduction
This section presents the results and discusses the findings related

to our first set of research questions, namely 𝑅𝑄1.1, 𝑅𝑄1.2, and

10
https://anonymous.4open.science/r/bloat-energy-consumption-836C

https://www.seagate.com/content/dam/seagate/migrated-assets/www-content/datasheets/pdfs/3-5-barracudaDS1900-14-2007US-en_US.pdf
https://images.nvidia.com/aem-dam/Solutions/Data-Center/l4/nvidia-ada-gpu-architecture-whitepaper-v2.1.pdf#%5B%7B%22num%22%3A107%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C52%2C731%2C0%5D
https://www.lighting.philips.co.uk/api/assets/v1/file/Signify/content/fp929003011582-pss-en_gb/Localized_Commercial_Leaflet.pdf
https://anonymous.4open.science/r/bloat-energy-consumption-836C

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

On the Effect of Feature Reduction on Energy Consumption: An Exploratory Study SPLC’25, September 01–September 05, 2025, A Coruña, Spain

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 2: 28 selected programs along with their respective binary size (left) and # options (right) in GNU, ToyBox, and BusyBox.

𝑅𝑄1.3. These questions examine the effects of built-in feature re-

duction on energy consumption, by exploring its correlation with

other non-functional properties, such as the program’s binary size,

configuration options, and execution time.

5.1 Results on Energy Consumption
General insights. Table 1 shows the average energy consumption

for each program in GNU, ToyBox, and BusyBox, along with the

standard deviation (StD) for the 10 repetitions. To conserve space,

the values in the table are presented in joules (J), even though the

measurements were conducted in micro-joules (𝜇J).
Looking at Table 1, we observed that the majority of programs

(uncolored) consume less than ≈ 7.5 J: specifically, 22 in GNU, 20
in ToyBox, and 20 in BusyBox. An energy consumption of 7.5 J is

equivalent to having a 10.5 W LED light bulb turned on for 0.72 sec-

onds.These program are considered as energy efficient according

to our own categorization.

On the other hand, only 1 to 3 programs fall into the 10 - 100 J

consumption range, making them less energy-efficient (). 10 J of

energy consumption is equivalent to turning on a 10.5 W LED light

bulb for 0.95 seconds, while 100 J is equivalent to 9.52 seconds of

use. Additionally, there are 3 energy-inefficient programs in GNU,
7 in ToyBox, and 5 in BusyBox, as they consume over 100 J ().

Although the values differ across various realizations of the same

program, only cp and md5sum programs consistently consume over

100 J in all three implementations. Although consuming less than

100 J in its original version, sort in ToyBox is the most energy-

consuming program, consuming ≈ 469.33 J. This is equivalent to

the energy consumed by a 10.5 W LED light bulb running for

44.7 seconds. It is noteworthy that the programs classifies as energy-

inefficient exhibit large standard deviations, indicating that their

energy consumption values are more spread out from the average.

Among these programs, cksum, md5sum, and comm have over 100%
StD (only in ToyBox), suggesting that the energy consumed in each

run varies significantly from the average. Despite that we conducted

multiple repetitions, identifying the precise factors influencing

these deviations in energy consumption for these programs proved

challenging.

Comparative analysis. As shown in Figure 2, the binary size and

number of run-time options in the programs from GNU are higher

Table 1: Energy Consumption ± Standard Deviation (StD) in
joules [J] for 28 programs with imposed feature reduction

Program GNU ± StD ToyBox ± StD Diff.% BusyBox ±
StD

Diff.%

base64 0.35 ± 0.04 0.91 ± 0.04 160 0.43 ± 0.08 23.13

basename 0.29 ± 0.02 0.29 ± 0.01 -0.48 0.29 ± 0.02 -0.11

cat 2.13 ± 0.11 1517.43 ± 81 71284 37.56 ± 1.93 1667

chmod 1.54 ± 1.28 1.52 ± 1.26 -1.06 1.95 ± 1.71 26.78

cksum 11.39 ± 11.42 206.25 ± 212 1710 245.80 ± 253 2057

comm 55.07 ± 5.56 338.32 ± 286 514 120.87 ± 8.63 120

cp 108.85 ± 7.20 147.44 ± 56.97 35.46 111.25 ± 18.99 2.21

cut 2.21 ± 0.25 11.40 ± 0.72 416 4.93 ± 1.20 123

date 0.32 ± 0.02 0.32 ± 0.02 -0.02 0.31 ± 0.02 -1.00

dirname 0.32 ± 0.02 0.31 ± 0.02 -2.89 0.31 ± 0.02 -3.56

du 0.52 ± 0.23 0.52 ± 0.23 -0.90 0.49 ± 0.21 -6.24

echo 0.32 ± 0.02 0.31 ± 0.02 -3.29 0.31 ± 0.02 -5.02

expand 7.27 ± 0.33 0.50 ± 0.03 -93.09 14.57 ± 0.85 100

factor 0.32 ± 0.02 0.32 ± 0.02 -1.80 0.32 ± 0.02 -1.77

false 0.32 ± 0.02 0.32 ± 0.02 -1.68 0.31 ± 0.02 -4.63

head 0.32 ± 0.02 0.31 ± 0.02 -1.62 0.31 ± 0.02 -3.77

id 0.33 ± 0.02 0.31 ± 0.02 -4.49 0.31 ± 0.02 -6.01

link 0.32 ± 0.02 0.31 ± 0.02 -1.55 0.31 ± 0.02 -3.45

ln 0.32 ± 0.02 0.34 ± 0.02 4.10 0.31 ± 0.02 -5.38

logname 0.32 ± 0.02 0.31 ± 0.02 -3.58 0.31 ± 0.02 -3.82

ls 1.05 ± 0.47 3.49 ± 1.03 233 0.90 ± 0.22 -14.34

md5sum 118.60 ± 122 264.03 ± 271 123 143.15 ± 147 20.70

mkdir 0.31 ± 0.02 0.30 ± 0.02 -2.05 0.30 ± 0.01 -2.92

mv 0.31 ± 0.02 0.30 ± 0.02 -3.27 0.30 ± 0.02 -3.80

sort 95.54 ± 4.75 469.33 ± 25.61 391 318.30 ± 16.59 233

touch 0.30 ± 0.02 0.30 ± 0.01 -0.01 0.29 ± 0.02 -0.23

true 0.29 ± 0.02 0.29 ± 0.02 -1.33 0.29 ± 0.02 0.02

wc 454.69 ± 24 151.48 ± 32.48 -66.68 87.56 ± 6.07 -80.74

Energy-inefficient programs Less Energy-efficient programs

Lower energy consumption Higher energy consumption

Non-significant Difference

than those in ToyBox and BusyBox. Therefore, using the programs

in GNU as a baseline, we conducted a comparative analysis to de-

termine whether the programs in ToyBox and BusyBox, with their

reduced features, are more energy-efficient than their counterparts

in GNU. In the Diff. % columns of Table 1, we present the compara-

tive analysis results. For each case, we use the Mann-Whitney U

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

SPLC’25, September 01–September 05, 2025, A Coruña, Spain Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Spearman correlation of execution time, binary size,
and number of options with energy consumption.

Energy/Size Energy/Options Energy/Exec Time

Spearman p-value Spearman p-value Spearman p-value

GNU 0.251 0.197 0.461 0.014 0.891 2.07e-10

ToyBox 0.350 0.068 0.392 0.039 0.966 1.02e-16

BusyBox 0.305 0.115 0.271 0.164 0.959 7.98e-16

No significant correlation (p-value> 0.05).

Interpretation of the coefficient: ±.9 - ±1.0 (very high); ±.70 - ±.90 (high); ±.50 - ±.70
(moderate); ±.30 - ±.50 (low); .00 - ±.30 (negligible)

test [31] to assess the statistical significance of the observed differ-

ences. A program’s difference is marked with the red line pattern

() if it lacks statistical significance in either of the two cases (p-

value above the 0.05 significance level). The computed p-values are

available in the reproduction package.

The results show that 18 of the 28 programs (≈ 64%) in ToyBox
consume less energy than their GNU counterparts for the same con-

figurations and inputs. Similarly, 17 of the 28 programs (≈ 61%)

in BusyBox use less energy. However, only 2 programs in each

system demonstrate statistically significant energy savings ().

This indicates that most energy reductions, while present, are not

strong enough to be considered statistically reliable (cf. negative
values with). Conversely, 10 programs (≈ 36%) in ToyBox and

11 programs (≈ 39%) in BusyBox consume more energy than their

GNU counterparts. Among these, 7 programs in each system show

statistically significant energy increases (), meaning that these

differences are more robust and likely not to random variation.

However, in 3 ToyBox programs and 4 BusyBox programs, the ob-

served energy increases are not statistically significant (cf. positive
values with). These results show that while a majority of pro-

grams in ToyBox and BusyBox consume less energy compared to

their counterparts in GNU, significant energy savings occur in only

7.14% of cases. In contrast, 25% of the cases exhibit statistically

significant increases in energy consumption.

These results provide initial insights suggesting that reducing

the binary size of an executable and the number of configuration

options in a program do not necessarily lead to lower energy con-

sumption.

5.2 Binary Size Impact
To explore the relationship between binary size and energy con-

sumption, we calculated the Spearman correlation, which, unlike

the Pearson correlation, does not require any normality assumption.

Spearman correlation, which captures monotonic relationships,

with results interpreted according to the Evans rule [24]. This anal-

yses encompassed all 28 programs in GNU, ToyBox, and BusyBox.
Basically, we focused on determining the correlations between the

binary size of the programs and their corresponding average energy

consumption, as outlined in Figure 2 (left) and Table 1 (columns

with StD), respectively.

The Energy/Size column in Table 2 presents the calculated cor-

relations. Spearman coefficients range from 0.251 to 0.350. The

highest correlations are in ToyBox and BusyBox, indicating a weak

correlation between binary size and energy consumption in these

programs. In contrast, the programs in GNU show a negligible cor-

relation, suggesting that the relationship between binary size and

energy consumption is insignificant. These findings, showing neg-
ligible to weak correlations, reinforce the initial insights and con-

clusions drawn from the comparative analysis in Section 5.1.

To determine whether the correlations are statistically signifi-

cant, we also calculated the p-value with the significance level (𝛼)

of 5% for each set of programs. The second column of Energy/Size
in Table 2 shows the obtained values. All p-values are greater than

0.05 (with), indicating that the negligible correlations are not

statistically significant. This suggests insufficient evidence to con-

fidently claim a relationship between the program’s binary sizes

and their energy consumption. In contrast, since the Spearman

p-value for ToyBox is close to the 𝛼 significance level, we can con-

clude that the weak correlation between program size and energy

consumption in ToyBox is almost statistically significant.

𝑹𝑸1.1 insights: The findings of our study, which involved

28 programs, suggest a very weak correlation between a pro-

gram’s binary size and its energy consumption, indicating

that other factors play a more significant role in determining

energy consumption.

5.3 Number of Configuration Options Impact
Similarly, to assess the impact of configuration options on a pro-

gram’s energy consumption, we measured the correlation between

the number of run-time configuration options (Figure 2, right) and

its energy consumption given (Table 1, columns with StD).

The Energy/Options column in Table 2 present the Spearman cal-

culated correlations for all programs in GNU, ToyBox, and BusyBox.
These coefficients, representing the relationship between the num-

ber of run-time options and energy consumption, range from 0.271

to 0.461. Except in BusyBox, the coefficients for GNU and ToyBox
show meaningful, though weak, relationships. These findings pro-

vide a contrast to the insights and conclusions drawn in Section 5.1.

Regarding statistical significance, we calculated the p-values

with a significance level of 𝛼 = 5%. The fifth column in Table 2

shows the obtained values. The p-values for GNU and ToyBox are

below the significance level, indicating that the weak correlation

in GNU and ToyBox are statistically significant. For BusyBox, the
p-value exceeds 𝛼 (with), suggesting that while there is a correla-

tion between the run-time options and energy consumption, the

evidence is not strong enough to confirm a meaningful relationship.

𝑹𝑸1.2 insights: Based on our findings, reducing the number

of run-time configuration options in a program does not

always result in lower energy consumption. However, in some

cases, a weak but statistically significant correlation exists

between the number of options and energy consumption.

This suggests that other factors may play a stronger role in

determining a program’s energy consumption.

5.4 Impact on Execution Time
Due to the weak to negligible correlations observed between a pro-

gram’s binary size and energy consumption, as well as between the

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

On the Effect of Feature Reduction on Energy Consumption: An Exploratory Study SPLC’25, September 01–September 05, 2025, A Coruña, Spain

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Six selected programs and their Bloated and Debloated binary sizes (B. size, D. size) and Energy Consumption ± Standard
Deviation (StD) in joules [J], for Chisel, Cov, and Debop.

Program B. size (KiB) D. size (KiB) Bloated ± StD Chisel ± StD Diff.% Cov ± StD Diff.% Debop ± StD Diff.%

date-8.21 92.03 33.54 0.288 ± 0.014 0.284 ± 0.010 -1.30 0.284 ± 0.009 -1.24 0.284 ± 0.010 -1.24

grep-2.4.2 158.83 93.42 0.317 ± 0.020 0.457 ± 0.021 44.22 0.315 ± 0.018 -0.58 0.315 ± 0.018 -0.53

gzip-1.3 101.71 66.72 0.335 ± 0.013 0.549 ± 0.022 64.03 0.332 ± 0.016 -0.87 0.332 ± 0.008 -0.91

mkdir-5.2.1 48.20 21.64 0.289 ± 0.016 0.288 ± 0.014 -0.50 0.288 ± 0.012 -0.63 0.288 ± 0.011 -0.67

printtokens2 20.68 20.68 0.282 ± 0.009 0.281 ± 0.012 -0.25 0.285 ± 0.021 1.11 0.282 ± 0.013 -0.08

sed-4.1.5 170.38 107.05 0.286 ± 0.010 0.289 ± 0.015 1.12 0.290 ± 0.022 1.69 0.287 ± 0.014 0.63

Lower energy consumption Higher energy consumption Non-significant difference on the consumed energy

number of run-time configuration options and energy consump-

tion, we conducted another investigation, specifically exploring

the correlation between a program’s execution time and its energy
consumption. Our aim was to determine whether execution time

influences energy consumption during a program’s execution and

to evaluate its consistency under built-in feature reduction.

The Energy/Exec Time column in Table 2 shows the computed

Spearman correlations for all three implementations of our 28 sub-

ject programs. They range from 0.891 to 0.966, indicating a con-

sistently high or nearly perfect correlation between a program’s

execution time and its energy consumption. The last column in Ta-

ble 2 also presents the associated p-values. All of them are between

1.02 · 10−16 and 2.07 · 10−10, significantly below the significance

level or 𝛼 = 5%. This indicates that the strong correlations between

execution time and energy consumption are statistically significant,

suggesting similar relationships may exist in other programs as

well.

𝑹𝑸1.3 insights: The relationship between energy consump-

tion and execution time remains consistent despite built-in

feature reduction. Furthermore, alternative implementations,

such as BusyBox and ToyBox, exhibit a stronger correlation
between energy consumption and execution time compared

to their GNU counterparts.

6 Methodology of the Experiment: On-demand
Feature Reduction and Energy Consumption

This section outlines our second experiment, conducted with soft-

ware programs subjected to on-demand feature reduction.

6.1 Subject Systems
To establish a representative set of software with on-demand fea-

ture reduction, we utilized open-access artifacts from Xin et al. [54],

which include debloated programs produced by three state-of-

the-art debloating techniques [8]. These used techniques and pro-

grams are widely recognized as benchmarks in debloating studies

(e.g., [8, 30, 54]). Specifically, we selected 6 GNU programs debloated

by Chisel, Debop, and Cov tools, focusing on those that we could

successfully compile and execute with the provided training input

and configuration. Notably, some of the compilation challenges

we encountered are also highlighted in [54]. These tools employ

debloating techniques that operate at the source code level. Each

of them requires both a bloated program and a specification of de-

sired or undesired features (i.e., a usage profile with configuration

options and an input) to produce debloated artifacts. This approach

enables controlled and on-demand feature reduction.

To strengthen our experiment, not only we applied three debloat-

ing techniques, but we also selected the 6 programs similar to those

in our initial experiment. This enables us to provide comparable re-

sults. Table 3 presents their original binary size (i.e., before debloat)
and reduced binary size (i.e., after debloat) in Kibibyte (KiB).

6.2 Experiment Settings
For each of the 6 programs, we measured energy consumption and

execution time in both bloated and debloated states.

We first extracted and compiled the source code of both the

bloated and debloated variants of the 6 subject programs. Each

program had three debloated variants, one produced by each of the

debloating tools. In addition, multiple usage profiles (i.e., configu-
rations with inputs) were available. For each debloated variant we

considered two different configurations, as in our first experiment

(i.e., same program, same debloating technique, but two different

input profiles per program). Each profile (configuration and input)

used in our study was selected based on two criteria. First, the

profile that produced correct output for all debloated variants of

the program. Secondly, similar to the first experiment, we used

purposive sampling [32] to select two profiles that represent the

program’s typical usage based on its documentation.

Thus, we measured the energy consumption of the 6 bloated

programs and their 18 debloated counterparts (6 ∗ 3), following the

same procedure and measurement setup described in Section 3.3.

To prevent side effects, all experiments were sequentially run 10

times as the only processes on the workstation.

7 Results of On-demand Feature Reduction
In this section, we present the results and examine the findings

related to built-in feature reduction research questions, 𝑅𝑄2.1 and

𝑅𝑄2.2, focusing on how binary size and execution time affect energy

consumption.

7.1 Results on Energy Consumption
The columns labeled ... ± StD in Table 3 show the average energy

consumption of software programs both before and after debloating.

For example, the original grep (bloated) consumes 0.317 J, while its

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

SPLC’25, September 01–September 05, 2025, A Coruña, Spain Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

debloated variant using the Cov tool consumes slightly less, about

0.315 J, equivalent to 0.03 seconds of LED light usage (10.5 W).

General insights. Table 3 shows that both bloated and debloated

programs consume less than 1 J, which is consistent with the trend

observed in our initial experiment with programs featuring built-in

feature reduction. The small standard deviation across our 10 repe-

titions suggests that the energy consumption values are consistent

around the average for all bloated and debloated programs.

Comparative analysis. Similarly, we performed a comparative

analysis to determine if the initial experiment’s findings hold for

programs with on-demand feature reduction. Specifically, we com-

pared the binary size and energy consumption of programs before

and after debloating. The columns labeledDiff .% in Table 3 show the

percentage change in energy consumption for debloated programs,

compared to their bloated variants, which serve as the baseline.

This shows whether energy consumption increased or decreased

after debloating. The statistical significance of the difference is also

computed. A program’s difference is highlighted with a red diago-

nal line pattern () if it lacks statistical significance in either of the

two scenarios, as determined by the Mann-Whitney U test [31].

All debloated programs have smaller binary size. However, as

in the initial experiment, the majority of differences in energy

consumption are not statistically significant. Specifically, 4 out of

6 programs debloated with Chisel, and all programs debloated

with Cov and Debop, show no significant differences (). Only 2

out of 6 programs debloated with Chisel demonstrate significant

differences (), with energy consumption increased by ≈ 44% and

≈ 64%, respectively. Moreover, no debloated program consumes

significantly less energy () than its bloated counterparts. This

reinforces our conclusion from the initial experiment that reducing

a program’s binary size through debloating does not necessarily

lead to lower energy consumption. The differences observed are

largely non-significant, and when significant, they tend towards

higher energy consumption, as are the two cases with Chisel.
Similar to the first experiment, we calculated the correlation

using Spearman coefficients [24]. This analysis included all 6 pro-

grams, both bloated and debloated variants of them, with a focus

on the correlations between binary size and average energy con-

sumption. We found that the correlation between binary size and

energy consumption in bloated programs was 0.314, indicating a

weak relationship. In contrast, the debloated programs showed a

moderate correlation of 0.60, as seen in the Energy/Binary Size col-
umn in Table 4. However, the p-values for all correlations exceed

the significance threshold of 𝛼 = 0.05, suggesting that the observed

correlations are not statistically significant. This indicates that there

is not enough evidence to show a meaningful relationship between

binary size and energy consumption in the debloated programs.

𝑹𝑸2.1 insights: Debloating techniques, aimed at reducing

a program’s binary size, do not consistently lower energy

consumption. In most cases, the differences in energy usage

between debloated and bloated variants are either statistically

insignificant or, occasionally, higher in the debloated variants.

Table 4: Spearman correlation of execution time and binary
size with energy consumption. No significant correlation

Energy/Exec Time Energy/Binary Size

Spearman p-value Spearman p-value

bloated 1.000 0.000 0.314 0.544

Chisel 1.000 0.000 0.600 0.208

Cov 0.886 0.019 0.600 0.208

Debop 0.943 0.005 0.600 0.208

7.2 Execution Time Impact
Due to the weak correlation between binary size and energy con-

sumption in both bloated and debloated programs, we extended our

investigation to explore whether execution time exhibits a stronger

correlation, as observed in our initial experiment. The Energy/Exec
Time column in Table 4 shows that the correlations computed for

the 6 debloated subjects by three tools fall between 0.886 and 1.00.

In bloated programs, the correlation between execution time and

energy consumption was 1.00, signifying a perfect relationship.

For debloated programs, the results demonstrate a high or nearly

perfect correlation between execution time and energy consump-

tion. Additionally, the p-values listed in the same column in Table 4

are significantly below the 𝛼 = 5% threshold. This indicates that

the strong observed correlation between energy consumption and

execution time in debloated programs is statistically significant,

suggesting that it may also hold true for other software programs.

𝑹𝑸2.2 insights: Similar to the first experiment, there is a

strong and consistent correlation between execution time and

energy consumption. This indicates that energy consumption

in software is closely linked to the program’s execution time.

Regardless of debloating, optimizing execution time emerges

as a critical factor in achieving energy-efficient software.

8 In-Depth Analysis, Discussion, and Insights
8.1 Summary of Key Findings
Our study reveals that feature reduction does not consistently lead

to lower energy consumption. In most cases, the impact of feature

reduction on energy consumption were statistically insignificant.

Specifically, in built-in alternatives, 4 out of 56 cases showed a

significant reduction, 14 a significant increase, and 38 had no signif-

icant difference. In debloated programs, 2 out of 18 cases showed a

significant increase in energy consumption, while 16 had no sig-

nificant change. Basically, when differences were significant, they

tended to result in increased energy consumption.

We found that there is a consistent and strong correlation be-

tween energy consumption and execution time across both types

of reduced programs. This suggests that reducing execution time

is an effective strategy for improving energy efficiency, regardless

of feature reduction. Moreover, our findings align with a recent

comparative evaluation of software debloating tools [8], which re-

ports that debloating techniques often have no significant impact

on execution time, and when they do, the effect tends to be negative,

consistent with our observations regarding energy consumption.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

On the Effect of Feature Reduction on Energy Consumption: An Exploratory Study SPLC’25, September 01–September 05, 2025, A Coruña, Spain

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1 grep-2.4.2 − p r t e x t ()

2 / / . . .

3
if (! out_quiet) {

4
if (pending > 0) {

5
prpending(beg);

6
}} / / . . .

1 gzip-1.3 − c t _ i n i t ()

2 / / . . .

3
if ((int) static_dtree[0].dl.len != 0) {

4 return;

5
}

6 / / . . .

Listing 2: Optimizing code removal by Chisel: LOC deleted
but executed in bloated, LOC newly executed in debloated.

Debloating approaches leverage feature reduction to optimize

non-functional properties, generally binary size or attack surface.

However, this mono-objective optimization can negatively affect

other non-functional properties. For instance, debloating with a

focus on reducing binary size may increase the attack surface [53].

8.2 Unintended Energy Impacts of Debloating
In light of these findings, it is essential to investigate why some

debloating techniques inadvertently lead to increased energy con-

sumption. One plausible explanation is that when debloating fo-

cuses solely on reducing binary size or attack surface, it might also

eliminate code segments that contribute to energy efficiency. To

explore this, we analyzed in depth the executed code of the two

debloated programs with significant increases: grep-2.4.2 and

gzip-1.3 (cf. marked with in Table 3). Both were debloated us-

ing Chisel, a mono-objective debloating tool focusing on reducing

binary size. To understand this difference, we analyzed the execu-

tion coverage using gcov 11
for both bloated and debloated variants

of these programs.We observed that there is a reduction in executed

lines of code for grep (−10.5%) and gzip (−11.4%) in the debloated

variants compared to their bloated counterparts. This reduction

seems counterintuitive given the increased energy consumption.

But, aligning code coverage reports with code diffs revealed that

Chisel removed certain optimizing code segments.

Specifically, in grep-2.4.2 (Listing 2), we observed that remov-

ing a conditional linked to the intentionally debloated --quiet op-

tion inadvertently caused additional code execution. For instance,

line 4, which previously prevented some unnecessary function calls,

was correctly removed with the removed option, but this resulted

in line 5 being executed 76 times in the debloated program variant.

Whereas, in gzip-1.3 (Listing 2), an early return removal caused

also some unnecessary computation. While the method was in-

voked fewer times in the debloated variant (once versus seven), we

think that the lack of early return logic could lead to inefficiency in

different contexts, negatively affecting energy consumption.

These observations show the need for an in-depth investigation

into the impact of removing code snippets which may play a role

in optimizing energy consumption. Additional cases that we found

are provided in the reproduction package. An interesting hypothe-

sis to explore is how debloating techniques, which aim to reduce

binary size, may unintentionally remove optimizing code, leading

to increased energy consumption despite reduced code execution.

8.3 ecv: Energy Consumption Visualizer
Both built-in and on-demand feature reduction are generally not

conducted with the aim to optimize energy consumption. Thus,

11
Code coverage analysis tool - gcov: https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

Figure 3: Output of our tool for the command "ls -la" show-
ing energy consumption measured over 5 repetitions.

providing information on energy consumption to developers is

crucial when selecting an alternative implementation or using a

debloated tool. To address this, we developed a tool called ecv 12
. It

uses progress bars to visually represent a software program’s energy

consumption. Additionally, below the progress bar, ecv provides
information about how long the program’s energy consumption

could power familiar devices like HDDs, GPUs, or LED light bulbs.

This helps developers easily understand the program’s energy usage

and how different configurations affect it. Listing 3 demonstrates

how to measure energy consumption of the "ls -la" command

using the --measure option of ecv, with five repetitions specified

by the --repeat 5 option. Figure 3 displays the corresponding

output, including details on how long the measured energy could

power three common electronics.

1 $. / ecv --command "ls -la" --measure --repeat 5

Listing 3: Measures the energy consumption of ls, 5 rept.

ecv offers two usage scenarios: one for developers and one for

end-users. For developers working on configurable systems, the

tool helps measure and track their programs’ energy consumption

as the software evolves. On the other hand, end-users can use ecv
to compare alternative programs based on their energy consump-

tion, as demonstrated in our initial experiment. We believe that this

enables users to make more informed decisions, particularly when

choosing between alternative program implementations. Further-

more, ecv is open source and available for evaluation. Its repository

includes additional usage examples to explore its capabilities.

8.4 Towards Energy-Aware Debloating
Our exploratory study shows the promising potential of debloating

techniques to reduce energy consumption, while also revealing

the challenges to fully realize this goal. While it may seem intu-

itive that removing code, potentially executed but associated with

non-necessary feature for a given profile would reduce energy

consumption, our observations suggest the contrary. We identify

snippets where debloating tools removes potential optimizing code

in term of energy efficiency, opening the way for approach pre-

serving these codes. Multi-objective approaches, such as the one

proposed by Debop, which simultaneously optimizes for binary

size and attack surface, represent a promising direction for fur-

ther exploration. Researchers might explore and investigate the

configuration space and its relationship with energy consumption,

either to predict execution time or to identify the most promising

configuration options to debloat when considering energy.

Finally, researchers can also leverage ecv to identify among the

alternative programs those with the lowest energy consumption

12
Available with a video demonstration: https://anonymous.4open.science/r/ecv-5E6E

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://anonymous.4open.science/r/ecv-5E6E

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

SPLC’25, September 01–September 05, 2025, A Coruña, Spain Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

and further investigate the reasons behind it, beyond binary size

and configuration options. For example, energy efficiency could be

influenced by the libraries used, or the algorithms employed.

9 Threats to Validity
Internal threats. In the initial experiment, energy consumption

measurements were based on two configurations for each program.

One potential threat is the selection bias, meaning the results may

have been influenced by the specific configurations chosen. How-

ever, we opted for themost commonly used configurations to ensure

that the measured energy consumption reflected typical usage for

these programs. Another potential threat is choice of input data

for each program, as input can affect energy consumption. We mit-

igated this by selecting representative inputs and keeping them

constant across similar programs. In future work, we plan to expand

our investigation by varying inputs and configurations to explore

their impact on energy consumption. Finally, we had to compile

both the bloated and particularly the debloated program variants

provided by Xin et al. [54]. Many of the debloated programs failed

to compile without segmentation faults (segfaults), so we included

only those that worked to ensure the results were unbiased.

External threats. Our experiments focus on a specific set of pro-

grams, namely GNU, ToyBox, and BusyBox programs written in C.

Although these programs are widely used in evaluations of debloat-

ing approaches and other studies, recent research has shown that

energy consumption can vary significantly between programming

languages [15, 26, 40]. Thus, we cannot generalize our findings to

feature reduction in configurable software systems implemented in

other languages or to systems with medium-to-large binary sizes

and configuration spaces, such as Linux or Chromium [6, 42].

10 Related Work
This work intersects three research fields, namely configurable

software systems, software bloat, and green computing.

Configurable software systems and debloating. Several studies
have investigated debloating techniques on configurable systems.

Ahmad et al. [3] proposed an approach to debloat code based on

user-provided command line arguments and application-specific

configuration files. Sharif et al. [46] developed an approach that

leverages user-provided configuration data to specialize an applica-

tion to its deployment context. Heo et al. [19] improved on previous

work by using a novel reinforcement learning based approach to

accelerate the search for debloated program and scale to large appli-

cations. Xin et al. [53] proposed a general multi-objective optimiza-

tion approach for debloating. Xin et al. [54] studied the trade-offs

between generality and reduction in software debloating. Tërnava

et al. [49] examined how the run-time configuration space affects

binary size, attack surface, and execution time. Moreover, two re-

cent surveys by Alhanahnah et al. [4] and Brown et al. [8] provide

an overview of existing debloating approaches and tools developed

over the past two decades. However, none of these studies has

explored the impact of feature reduction on energy consumption.

Software product lines and green computing. Some studies mea-

sure the correlation between system execution time and energy

consumption, focusing on adjusting rather than removing runtime

configuration options [52]. In our case, we aim to reduce binary

size by debloating and observe the system’s footprint and its corre-

lation with energy consumption. Sahin et al. [44] have investigated

how different types of refactoring impact energy consumption, us-

ing hardware instrumented measurements. They demonstrate that

refactoring significantly affects energy consumption, though this

effect can either increase or decrease energy usage depending on

the application and execution platform. Guégain et al. [17] have

explored energy consumption in software product lines, propos-

ing a method to measure energy usage in such contexts. Using a

T-wise algorithm, they produce 602 configurations of Robocode-

SPL and measured the consumption for each, identifying the most

energy-efficient ones. With this method, Guégain et al. [17] iden-

tified some configurations with a reduction in consumption of at

least 40%. While their approach is based on SPL, it does not take

into consideration feature reduction. Islam et al. [22] measured the

energy consumption of individual features by slicing the source

code associated with each feature, then monitoring energy con-

sumption. This approach works well for individual features but

does not consider interactions between them. Other works are fo-

cused on power consumption of specific code patterns or "energy

hotspots" (e.g., [33, 39]). In 2015, Noureddine et al. [34] proposed

a method for identifying and evaluating high energy consuming

spots in Java source code.Pereira et al. [39] developed a method to

locate inefficient source code fragments, demonstrating that devel-

opers using their technique improved energy efficiency by 43% on

average. Like Islam et al. [22], these two approaches do not take

the interactions between features into account. To the best of our

knowledge, our study is the first to investigate the effect of feature

reduction on energy consumption of configurable systems.

11 Conclusion and Perspectives
This paper presented a novel exploratory study on the effect of

built-in and on-demand feature reduction of configurable systems

on energy consumption. We found weak and mostly no signifi-

cant correlations between energy consumption and factors such

as binary size or the number of configuration options in software

systems. This suggests that smaller binaries and fewer options do

not necessarily lead to lower energy consumption. Interestingly, a

given feature in a built-in reduced software system, similarly in an

on-demand debloated software system, is more likely consuming

more than in the original configurable software system. However,

execution time showed a strong and significant link to energy con-

sumption, indicating that its optimization is the key to making

debloated software more efficient in terms of energy.

While traditional debloating techniques aim to remove unneces-

sary features to minimize binary size to reduce the attack surface,

our study provides evidence for a new research direction: devel-

oping debloating strategies that prioritize energy efficiency and

execution time, shifting the focus from size and security to sustain-

ability and performance. In addition, analyzing long-term energy

consumption in real-world usage, such as widely deployed tools

like coreutils, can identify patterns and usage contexts where

energy costs are highest. These insights can directly inform and mo-

tivate energy-aware debloating techniques by focusing on features

with most energy-intensive in practice and therefore promising

candidates for removal or optimization.

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

On the Effect of Feature Reduction on Energy Consumption: An Exploratory Study SPLC’25, September 01–September 05, 2025, A Coruña, Spain

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

References
[1] Mathieu Acher, Hugo Martin, Luc Lesoil, Arnaud Blouin, Jean-Marc Jézéquel,

Djamel Eddine Khelladi, Olivier Barais, and Juliana Alves Pereira. 2022. Feature

Subset Selection for Learning Huge Configuration Spaces: The Case of Linux

Kernel Size. In Proceedings of the 26th ACM International Systems and Software
Product Line Conference - Volume A (Graz, Austria) (SPLC ’22). Association for

Computing Machinery, New York, NY, USA, 85–96. https://doi.org/10.1145/

3546932.3546997

[2] Bilge Acun, Phil Miller, and Laxmikant V. Kale. 2016. Variation Among Pro-

cessors Under Turbo Boost in HPC Systems. In Proceedings of the 2016 In-
ternational Conference on Supercomputing (Istanbul, Turkey) (ICS ’16). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 6, 12 pages.

https://doi.org/10.1145/2925426.2926289

[3] Aatira Anum Ahmad, Abdul Rafae Noor, Hashim Sharif, Usama Hameed, Shoaib

Asif, Mubashir Anwar, Ashish Gehani, Fareed Zaffar, and Junaid Haroon Sid-

diqui. 2022. Trimmer: An Automated System for Configuration-Based Software

Debloating. IEEE Transactions on Software Engineering 48, 9 (2022), 3485–3505.

https://doi.org/10.1109/TSE.2021.3095716

[4] Mohannad Alhanahnah, Yazan Boshmaf, and Ashish Gehani. 2024. SoK: Software

Debloating Landscape and Future Directions. In Proceedings of the 2024 Workshop
on Forming an Ecosystem Around Software Transformation (Salt Lake City, UT,

USA) (FEAST ’24). Association for Computing Machinery, New York, NY, USA,

11–18. https://doi.org/10.1145/3689937.3695792

[5] Peter Bambazek, Iris Groher, and Norbert Seyff. 2022. Sustainability in Agile

Software Development: A Survey Study among Practitioners. In 2022 Interna-
tional Conference on ICT for Sustainability (ICT4S). 13–23. https://doi.org/10.

1109/ICT4S55073.2022.00013

[6] Peter Beverloo. 2020-08-12. List of Chromium Command Line Switches. https:

//peter.sh/experiments/chromium-command-line-switches/.

[7] Aurélien Bourdon, Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. 2013.

PowerAPI: A Software Library to Monitor the Energy Consumed at the Process-

Level. ERCIM News 92 (Jan. 2013), 43–44. https://inria.hal.science/hal-00772454

[8] Michael D. Brown, Adam Meily, Brian Fairservice, Akshay Sood, Jonathan Dorn,

Eric Kilmer, and Ronald Eytchison. 2024. A Broad Comparative Evaluation of

Software Debloating Tools. In 33rd USENIX Security Symposium (USENIX Security
24). USENIX Association, Philadelphia, PA, 3927–3943. https://www.usenix.org/

conference/usenixsecurity24/presentation/brown

[9] Shaiful Alam Chowdhury and Abram Hindle. 2016. GreenOracle: Estimating

Software Energy Consumption With Energy Measurement Corpora. In Proceed-
ings of the 13th International Conference on Mining Software Repositories (Austin,
Texas) (MSR ’16). Association for Computing Machinery, New York, NY, USA,

49–60. https://doi.org/10.1145/2901739.2901763

[10] Marco Couto, Paulo Borba, Jácome Cunha, João Paulo Fernandes, Rui Pereira,

and João Saraiva. 2017. Products go Green: Worst-Case Energy Consump-

tion in Software Product Lines. In Proceedings of the 21st International Systems
and Software Product Line Conference - Volume A (Sevilla, Spain) (SPLC ’17).
Association for Computing Machinery, New York, NY, USA, 84–93. https:

//doi.org/10.1145/3106195.3106214

[11] Marco Couto, João Paulo Fernandes, and João Saraiva. 2021. Statically analyzing

the energy efficiency of software product lines. Journal of Low Power Electronics
and Applications 11, 1 (2021), 13. https://doi.org/10.3390/jlpea11010013

[12] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian

Le. 2010. RAPL: Memory Power Estimation and Capping. In Proceedings of the
16th ACM/IEEE International Symposium on Low Power Electronics and Design
(Austin, Texas, USA) (ISLPED ’10). Association for Computing Machinery, New

York, NY, USA, 189–194. https://doi.org/10.1145/1840845.1840883

[13] João De Macedo, Rui Abreu, Rui Pereira, and João Saraiva. 2022. WebAssem-

bly versus JavaScript: Energy and Runtime Performance. In 2022 International
Conference on ICT for Sustainability (ICT4S). 24–34. https://doi.org/10.1109/

ICT4S55073.2022.00014

[14] Gerhard Fettweis and Ernesto Zimmermann. 2008. ICT: Energy Consumption-

Trends and Challenges. In Proceedings of the 11th International Symposium on
Wireless Personal Multimedia Communications, Vol. 2. Lapland, Finland, 6. https:

//api.semanticscholar.org/CorpusID:9129930

[15] Stefanos Georgiou, Maria Kechagia, and Diomidis Spinellis. 2017. Analyzing

Programming Languages’ Energy Consumption: An Empirical Study. In Proceed-
ings of the 21st Pan-Hellenic Conference on Informatics (Larissa, Greece) (PCI ’17).
Association for Computing Machinery, New York, NY, USA, Article 42, 6 pages.

https://doi.org/10.1145/3139367.3139418

[16] GNU. [n. d.]. GNU Core Utilities. https://www.gnu.org/software/coreutils/

[17] Édouard Guégain, Clément Quinton, and Romain Rouvoy. 2021. On Reducing the

Energy Consumption of Software Product Lines. In Proceedings of the 25th ACM
International Systems and Software Product Line Conference - Volume A (Leicester,

United Kingdom) (SPLC ’21). Association for Computing Machinery, New York,

NY, USA, 89–99. https://doi.org/10.1145/3461001.3471142

[18] María Gutiérrez, Ma Ángeles Moraga, and Félix García. 2022. Analysing the

Energy Impact of Different Optimisations for Machine Learning Models. In

2022 International Conference on ICT for Sustainability (ICT4S). 46–52. https:

//doi.org/10.1109/ICT4S55073.2022.00016

[19] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective

Program Debloating via Reinforcement Learning. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (Toronto, Canada)

(CCS ’18). Association for Computing Machinery, New York, NY, USA, 380–394.

https://doi.org/10.1145/3243734.3243838

[20] Abram Hindle, Alex Wilson, Kent Rasmussen, E. Jed Barlow, Joshua Charles

Campbell, and Stephen Romansky. 2014. GreenMiner: A Hardware Based Mining

Software Repositories Software Energy Consumption Framework. In Proceedings
of the 11thWorking Conference on Mining Software Repositories (Hyderabad, India)
(MSR 2014). Association for Computing Machinery, New York, NY, USA, 12–21.

https://doi.org/10.1145/2597073.2597097

[21] Gerard J. Holzmann. 2015. Code Inflation. http://spinroot.com/gerard/pdf/Code_

Inflation.pdf. Accessed: 2025-04-20.

[22] Syed Islam, Adel Noureddine, and Rabih Bashroush. 2016. Measuring Energy

Footprint of Software Features. In 2016 IEEE 24th International Conference on
Program Comprehension (ICPC). 1–4. https://doi.org/10.1109/ICPC.2016.7503726

[23] Mathilde Jay, Vladimir Ostapenco, Laurent Lefevre, Denis Trystram, Anne-Cécile

Orgerie, and Benjamin Fichel. 2023. An Experimental Comparison of Software-

Based PowerMeters: Focus on CPU andGPU. In 2023 IEEE/ACM 23rd International
Symposium on Cluster, Cloud and Internet Computing (CCGrid). 106–118. https:

//doi.org/10.1109/CCGrid57682.2023.00020

[24] Maurice George Kendall. 1948. Rank Correlation Methods. (1948).

[25] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K. Nurminen, and

Zhonghong Ou. 2018. RAPL in Action: Experiences in Using RAPL for Power

Measurements. ACM Trans. Model. Perform. Eval. Comput. Syst. 3, 2, Article 9
(March 2018), 26 pages. https://doi.org/10.1145/3177754

[26] Lukas Koedijk and Ana Oprescu. 2022. Finding Significant Differences in the

Energy Consumption when Comparing Programming Languages and Programs.

In 2022 International Conference on ICT for Sustainability (ICT4S). 1–12. https:

//doi.org/10.1109/ICT4S55073.2022.00012

[27] Masanari Kondo, Cor-Paul Bezemer, Yasutaka Kamei, Ahmed E Hassan, and

Osamu Mizuno. 2019. The Impact of Feature Reduction Techniques on Defect

Prediction Models. Empirical Software Engineering 24 (2019), 1925–1963. https:

//doi.org/10.1007/s10664-018-9679-5

[28] Elias Kuiter, Chico Sundermann, Thomas Thüm, Tobias Hess, Sebastian Krieter,

and Gunter Saake. 2025. How Configurable is the Linux Kernel? Analyzing Two

Decades of Feature-Model History. ACM Trans. Softw. Eng. Methodol. (April 2025).
https://doi.org/10.1145/3729423 Just Accepted.

[29] Robert Landley and et. al. [n. d.]. ToyBox. http://landley.net/toybox/about.html

[30] Bo Lin, Shangwen Wang, Yihao Qin, Liqian Chen, and Xiaoguang Mao.

2025. Large Language Models-Aided Program Debloating. arXiv preprint
arXiv:2503.08969 (2025). https://doi.org/10.48550/arXiv.2503.08969

[31] H. B. Mann and D. R. Whitney. 1947. On a Test of Whether one of Two Random

Variables is Stochastically Larger than the Other. The Annals of Mathematical
Statistics 18, 1 (1947), 50–60. http://www.jstor.org/stable/2236101

[32] B Mattew Miles and Michael A Huberman. 1994. An Expanded Sourcebook:
Qualitative Data Analysis. Sage publications.

[33] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. 2013. A Review of

Energy Measurement Approaches. SIGOPS Oper. Syst. Rev. 47, 3 (Nov. 2013),

42–49. https://doi.org/10.1145/2553070.2553077

[34] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. 2015. Monitoring

Energy Hotspots in Software: Energy Profiling of Software Code. Automated
Software Engineering 22 (2015), 291–332. https://doi.org/10.1007/s10515-014-

0171-1

[35] Zakaria Ournani, Mohammed Chakib Belgaid, Romain Rouvoy, Pierre Rust, and

Joël Penhoat. 2021. Evaluating the Impact of Java Virtual Machines on Energy

Consumption. In Proceedings of the 15th ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM) (Bari, Italy) (ESEM ’21).
Association for Computing Machinery, New York, NY, USA, Article 15, 11 pages.

https://doi.org/10.1145/3475716.3475774

[36] Zakaria Ournani, Mohammed Chakib Belgaid, Romain Rouvoy, Pierre Rust, Joel

Penhoat, and Lionel Seinturier. 2020. Taming Energy Consumption Variations In

Systems Benchmarking. In Proceedings of the ACM/SPEC International Conference
on Performance Engineering (Edmonton AB, Canada) (ICPE ’20). Association for

Computing Machinery, New York, NY, USA, 36–47. https://doi.org/10.1145/

3358960.3379142

[37] Zakaria Ournani, Romain Rouvoy, Pierre Rust, and Joel Penhoat. 2020. On Re-

ducing the Energy Consumption of Software: From Hurdles to Requirements.

In Proceedings of the 14th ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM) (Bari, Italy) (ESEM ’20). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 14, 12 pages.

https://doi.org/10.1145/3382494.3410678

[38] Candy Pang, Abram Hindle, Bram Adams, and Ahmed E. Hassan. 2016. What

Do Programmers Know about Software Energy Consumption? IEEE Software 33,
3 (2016), 83–89. https://doi.org/10.1109/MS.2015.83

[39] Rui Pereira, Tiago Carção, Marco Couto, Jácome Cunha, João Paulo Fernandes,

and João Saraiva. 2020. SPELLing Out Energy Leaks: Aiding Developers Locate

https://doi.org/10.1145/3546932.3546997
https://doi.org/10.1145/3546932.3546997
https://doi.org/10.1145/2925426.2926289
https://doi.org/10.1109/TSE.2021.3095716
https://doi.org/10.1145/3689937.3695792
https://doi.org/10.1109/ICT4S55073.2022.00013
https://doi.org/10.1109/ICT4S55073.2022.00013
https://peter.sh/experiments/chromium-command-line-switches/
https://peter.sh/experiments/chromium-command-line-switches/
https://inria.hal.science/hal-00772454
https://www.usenix.org/conference/usenixsecurity24/presentation/brown
https://www.usenix.org/conference/usenixsecurity24/presentation/brown
https://doi.org/10.1145/2901739.2901763
https://doi.org/10.1145/3106195.3106214
https://doi.org/10.1145/3106195.3106214
https://doi.org/10.3390/jlpea11010013
https://doi.org/10.1145/1840845.1840883
https://doi.org/10.1109/ICT4S55073.2022.00014
https://doi.org/10.1109/ICT4S55073.2022.00014
https://api.semanticscholar.org/CorpusID:9129930
https://api.semanticscholar.org/CorpusID:9129930
https://doi.org/10.1145/3139367.3139418
https://www.gnu.org/software/coreutils/
https://doi.org/10.1145/3461001.3471142
https://doi.org/10.1109/ICT4S55073.2022.00016
https://doi.org/10.1109/ICT4S55073.2022.00016
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1145/2597073.2597097
http://spinroot.com/gerard/pdf/Code_Inflation.pdf
http://spinroot.com/gerard/pdf/Code_Inflation.pdf
https://doi.org/10.1109/ICPC.2016.7503726
https://doi.org/10.1109/CCGrid57682.2023.00020
https://doi.org/10.1109/CCGrid57682.2023.00020
https://doi.org/10.1145/3177754
https://doi.org/10.1109/ICT4S55073.2022.00012
https://doi.org/10.1109/ICT4S55073.2022.00012
https://doi.org/10.1007/s10664-018-9679-5
https://doi.org/10.1007/s10664-018-9679-5
https://doi.org/10.1145/3729423
http://landley.net/toybox/about.html
https://doi.org/10.48550/arXiv.2503.08969
http://www.jstor.org/stable/2236101
https://doi.org/10.1145/2553070.2553077
https://doi.org/10.1007/s10515-014-0171-1
https://doi.org/10.1007/s10515-014-0171-1
https://doi.org/10.1145/3475716.3475774
https://doi.org/10.1145/3358960.3379142
https://doi.org/10.1145/3358960.3379142
https://doi.org/10.1145/3382494.3410678
https://doi.org/10.1109/MS.2015.83

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

SPLC’25, September 01–September 05, 2025, A Coruña, Spain Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Energy Inefficient Code. Journal of Systems and Software 161 (2020), 110463.

https://doi.org/10.1016/j.jss.2019.110463

[40] Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo

Fernandes, and João Saraiva. 2021. Ranking Programming Languages by Energy

Efficiency. Science of Computer Programming 205 (2021), 102609. https://doi.

org/10.1016/j.scico.2021.102609

[41] Gustavo Pinto, Fernando Castor, and Yu David Liu. 2014. Mining Questions

About Software Energy Consumption (MSR 2014). Association for Computing

Machinery, New York, NY, USA, 22–31. https://doi.org/10.1145/2597073.2597110

[42] Chenxiong Qian, Hyungjoon Koo, ChangSeok Oh, Taesoo Kim, and Wenke Lee.

2020. Slimium: Debloating the Chromium Browser with Feature Subsetting. In

Proceedings of the 2020 ACM SIGSACConference on Computer and Communications
Security (Virtual Event, USA) (CCS ’20). Association for Computing Machinery,

New York, NY, USA, 461–476. https://doi.org/10.1145/3372297.3417866

[43] Stephen Romansky, Neil C. Borle, Shaiful Chowdhury, Abram Hindle, and Russ

Greiner. 2017. Deep Green: Modelling Time-Series of Software Energy Con-

sumption. In 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 273–283. https://doi.org/10.1109/ICSME.2017.79

[44] Cagri Sahin, Lori Pollock, and James Clause. 2014. How do Code Refactorings Af-

fect Energy Usage?. In Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (Torino, Italy) (ESEM ’14).
Association for Computing Machinery, New York, NY, USA, Article 36, 10 pages.

https://doi.org/10.1145/2652524.2652538

[45] Simon Schubert, Dejan Kostic, Willy Zwaenepoel, and Kang G. Shin. 2012. Pro-

filing Software for Energy Consumption. In 2012 IEEE International Conference
on Green Computing and Communications. 515–522. https://doi.org/10.1109/

GreenCom.2012.86

[46] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar. 2018.

TRIMMER: Application Specialization for Code Debloating. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering
(Montpellier, France) (ASE ’18). Association for Computing Machinery, New York,

NY, USA, 329–339. https://doi.org/10.1145/3238147.3238160

[47] Shivkumar Shivaji, E. James Whitehead, Ram Akella, and Sunghun Kim. 2013.

Reducing Features to Improve Code Change-Based Bug Prediction. IEEE Trans-
actions on Software Engineering 39, 4 (2013), 552–569. https://doi.org/10.1109/

TSE.2012.43

[48] Shivkumar Shivaji, E. James Whitehead, Ram Akella, and Sunghun Kim. 2009.

Reducing Features to Improve Bug Prediction. In 2009 IEEE/ACM International
Conference on Automated Software Engineering. 600–604. https://doi.org/10.1109/

ASE.2009.76

[49] Xhevahire Tërnava, Mathieu Acher, and Benoit Combemale. 2023. Specialization

of Run-time Configuration Space at Compile-time: An Exploratory Study. In

Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing (Tallinn,

Estonia) (SAC ’23). Association for Computing Machinery, New York, NY, USA,

1459–1468. https://doi.org/10.1145/3555776.3578613

[50] Roberto Verdecchia, Luís Cruz, June Sallou, Michelle Lin, James Wickenden,

and Estelle Hotellier. 2022. Data-Centric Green AI An Exploratory Empirical

Study. In 2022 International Conference on ICT for Sustainability (ICT4S). 35–45.
https://doi.org/10.1109/ICT4S55073.2022.00015

[51] Denys Vlasenko and et. al. [n. d.]. BusyBox. https://busybox.net/

[52] Max Weber, Christian Kaltenecker, Florian Sattler, Sven Apel, and Norbert Sieg-

mund. 2023. Twins or False Friends? A Study on Energy Consumption and

Performance of Configurable Software. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE). 2098–2110. https://doi.org/10.1109/

ICSE48619.2023.00177

[53] Qi Xin, Myeongsoo Kim, Qirun Zhang, and Alessandro Orso. 2020. Program

Debloating via Stochastic Optimization. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: New Ideas and Emerging Results
(Seoul, South Korea) (ICSE-NIER ’20). Association for Computing Machinery,

New York, NY, USA, 65–68. https://doi.org/10.1145/3377816.3381739

[54] Qi Xin, Qirun Zhang, and Alessandro Orso. 2023. Studying and Understanding

the Tradeoffs Between Generality and Reduction in Software Debloating. In

Proceedings of the 37th IEEE/ACM International Conference on Automated Soft-
ware Engineering (Rochester, MI, USA) (ASE ’22). Association for Computing

Machinery, New York, NY, USA, Article 99, 13 pages. https://doi.org/10.1145/

3551349.3556970

https://doi.org/10.1016/j.jss.2019.110463
https://doi.org/10.1016/j.scico.2021.102609
https://doi.org/10.1016/j.scico.2021.102609
https://doi.org/10.1145/2597073.2597110
https://doi.org/10.1145/3372297.3417866
https://doi.org/10.1109/ICSME.2017.79
https://doi.org/10.1145/2652524.2652538
https://doi.org/10.1109/GreenCom.2012.86
https://doi.org/10.1109/GreenCom.2012.86
https://doi.org/10.1145/3238147.3238160
https://doi.org/10.1109/TSE.2012.43
https://doi.org/10.1109/TSE.2012.43
https://doi.org/10.1109/ASE.2009.76
https://doi.org/10.1109/ASE.2009.76
https://doi.org/10.1145/3555776.3578613
https://doi.org/10.1109/ICT4S55073.2022.00015
https://busybox.net/
https://doi.org/10.1109/ICSE48619.2023.00177
https://doi.org/10.1109/ICSE48619.2023.00177
https://doi.org/10.1145/3377816.3381739
https://doi.org/10.1145/3551349.3556970
https://doi.org/10.1145/3551349.3556970

	Abstract
	1 Introduction
	2 Background
	2.1 Feature Reduction
	2.2 Energy Consumption Methods

	3 Experimental Approach
	3.1 Research Questions
	3.2 Dependent and Independent Variables
	3.3 Measurement Setup

	4 Methodology for Built-in Feature Reduction experiment
	4.1 Subject Systems
	4.2 Pre-experiment Settings
	4.3 Experiment Settings

	5 Results of Built-in Feature Reduction
	5.1 Results on Energy Consumption
	5.2 Binary Size Impact
	5.3 Number of Configuration Options Impact
	5.4 Impact on Execution Time

	6 Methodology of the Experiment: On-demand Feature Reduction and Energy Consumption
	6.1 Subject Systems
	6.2 Experiment Settings

	7 Results of On-demand Feature Reduction
	7.1 Results on Energy Consumption
	7.2 Execution Time Impact

	8 In-Depth Analysis, Discussion, and Insights
	8.1 Summary of Key Findings
	8.2 Unintended Energy Impacts of Debloating
	8.3 ecv: Energy Consumption Visualizer
	8.4 Towards Energy-Aware Debloating

	9 Threats to Validity
	10 Related Work
	11 Conclusion and Perspectives
	References

