
MELT- a Lisp dialect matching GCC internals?

Basile STARYNKÉVITCH

CEA LIST (Software Reliability Lab)??
Saclay, France

basile@starynkevitch.net

Abstract. Since the GCC compiler is extensible thru plugins, many innovative
applications can be considered, and would better be coded in a high-level lan-
guage. But using an existing one is impractical. We demonstrate that GCC (a
huge mature free software) can be flexibly extended thru MELT (Middle End Lisp
Translator), which translates a Lisp dialect into C code suitable inside GCC. We
describe the infrastructure and the linguistic devices useful to easily extend GCC
and adapt to its evolution. These are constructs defining how to generate C code
fitted to GCC internals. Notably, a versatile pattern-matching facility has been
implemented in our bootstrapped MELT translator, and is useful to work on GCC
middle-end (tree & gimple, ...) internal representations.

1 Introduction

The current GCC1 free compiler is an important production [straight|cross] compiler
for many source languages (C, C++, Ada, Java, Fortran, ...), about 30 different machine
architectures, and many systems. Its source code size is huge (3844KLOC)2 and growing
(42% increase in 2 years)3. It has hundreds of contributors (but no “benevolent dictator”
contrarily to the Linux kernel) and strict social rules4.

GCC [10] has several front-ends (parsing C, C++, Ada, Fortran, . . . source code)
producing common internal representations called Tree and Generic. These are later
transformed into middle-end internal representations, called Gimple - thru a transfor-
mation called gimplification. The bulk of the compiler work is to operate repeatedly on
these Gimple representations, and its middle-end contains nearly 200 passes moulding
these (in different forms). Finally, target-machine specific back-ends generate, from a
low-level Gimple, using the Register Transfer Language representations, the generated
assembly code. Besides that, many other data structures exist within GCC (and a lot of
global variables).

? svn $Revision: 112 $ - unpublished draft of submission to CC2010.
c©Basile Starynkevitch 2009,2010 - do not transmit or publish without permission.

?? CEA DRT/LIST/DTSI/SOL; bat 528 pt courrier 94; 91191 GIF/YVETTE CEDEX; France.
1 Gnu Compiler Collection (next is 4.5, at end 2009, from current GCC trunk, on gcc.gnu.org)
2 Kilo-lines of code, measured by D.Wheeler’s sloccount on GCC 4.4.1; On GCC trunk

rev.152437 of October 4th 2009, sloccount gives 3962KLOC.
3 gcc-4.2.1.tar.bz2 (July 2007), is 44Mb; gcc-4.4.1.tar.bz2, (July 2009), almost 63Mb.
4 Every submitted code patch should be accepted by a reviewer.

It should be stressed that most internal GCC representations are constantly evolving,
and there is no stability5 of the internal GCC API6.

The forthcoming GCC 4.5 will provide several disruptive new features, including
Link Time Optimization and Plugins7. This will enable using and extending GCC for
non code-generation activities like static analysis [11, 3, 19, 31], threats detection (like
in Two[12] or Astrée[5, 6]), code refactoring, coding rules validation[18], etc. . . or ad-
hoc library optimizations8 while taking advantage of the many powerful existing GCC
passes and internal representations. In this perspective, GCC should have “everything
but the kitchen-sink” for source programs manipulation (thru many plugins) 9,
much like Emacs provides “everything but the kitchen-sink” for interactive text handing
and editing. For such non-mainstream developments of GCC plugin extensions, and for
prototyping, better programmer’s productivity is essential. Higher level languages like
Ocaml, Haskell, Lisp[23, 30] or scripting implementations like Python, Ruby, Guile,
. . . increase that productivity (perhaps at the expense of runtime performance). While
several static analyzers (Frama-C, Astrée, ...) are coded in Ocaml [7], having similar
tools available as GCC plugins would benefit the user community (adding extra options
to gcc is much easier than using another tool) and perhaps even the GCC compiler (in
the future, advanced but costly static analysis could improve code generation); most
importantly, working on internal representations takes advantage of existing features in
GCC (optimization, multiple front-ends, . . .).

But embedding an existing language implementation inside GCC is impractical,
because GCC is evolving very quickly, and has no stable interface. Also, most of GCC
API are simple inlined functions, or short C macros, or even raw C struct access. Hand
coding the necessary C glue code (for e.g. Ocaml, Python, or Guile runtime) is a huge
boring effort (to be updated at every GCC release) or should be confined to a small
subset of the API in a specific version of GCC (like [2]), and glue generators (Swig
or Camlidl cannot really help since they expect a well formalized interface, with some
peculiar restrictions. Furthermore, such glue code usually makes a C glue function out
of every trait of the API, adding a performance burden. There is an impedance mismatch
between GCC data and functions and some higher level language implementation. Also,
GCC has its own garbage collector Ggc10, and mixing different garbage collectors is

5 This is nearly a dogma of its community, to discourage proprietary software abuse of GCC.
6 GCC has no well defined and documented application programming interface for compiler

extensions; its API is just a big set of internal header files, so is a bit messy for outsiders.
7 The design and implementation of plugins within GCC has been influenced by MELT. Plugins,

in particular MELT, are only available in GCC on hosts (GNU/Linux, Solaris, . . .) having
dlopen, which is a function to dynamically load a shared object [i.e. a plugin binary file]
within a process.

8 Optimizations like replacing fprintf(stdout,. . .) with printf(. . .) after function inlining
- we call that our make-green optimization -, or more complex transformations caring about
specific library semantics - like stdc++ containers or Qt widgets, etc

9 Coding a “psychotherapist” GCC plugin in MELT is left , as an exercise to the courageous
reader! Emacs already has M-x doctor but please make it better in MELT, without expecting
it , to surpass human professionals!

10 The Ggc is implemented in gcc/ggc*.[ch] and in the gengtype code generator, which parses
GTY-annotated C structures to generate their marking routines.

notoriously error-prone. Given the growing size of GCC and of its community it would
be unrealistic to alter its coding habits.

Therefore, the reasonable way to provide a higher level language for GCC plu-
gins is to dynamically generate suitable C code adapted to GCC style and legacy and
similar in form to existing hand-coded C routines inside GCC. This is the driving idea
of our MELT (Middle End Lisp Translator) language and plugin implementation [28,
29, 27]. By generating suitable C code for GCC internals, MELT fits well into existing
GCC technology. This is in sharp contrast with the Emacs editor or the C-- compiler
[24] whose architecture was designed and centered on an embedded interpreter (E-Lisp
for Emacs, Luaocaml for C--).

This paper demonstrates that a huge mature compiler can still be flexibly extended
with a higher level language, by generating C code suitable for/as plugins. It shows
these extensions can be used thru an appropriate runtime (§2), describes some of the
required linguistic devices (§3), notably a flexible pattern matching facility (§4). It con-
cludes (§5) with future work and possible applications.

The reader is expected to understand the complexity of current compiler technology,
and to know a bit some existing Lisp-like language, be it Common Lisp, Scheme[26],
Emacs-Lisp etc . . .

2 Using MELT and its runtime.

From the user’s perspective, the GCC compiler enabled with MELT (GCCmelt) can be run
with a command as: gcc -fplugin=melt.so -fplugin-arg-melt-mode=makegreen

-O -c foo.c. This instructs GCC to run the compiler proper cc1, asks it to load the
melt.so plugin which provides the MELT specific runtime infrastructure, and passes to
that plugin the argument mode=makegreen while cc1 compiles the user’s foo.c. The
melt.so plugin initializes the MELT runtime, hence itself dlopen-s MELT modules like
warmelt-*.so . . .ana-simple.so. These modules initialize MELT data, e.g. classes
and handlers. The MELT handler associated to mode makegreen registers a new GCC
pass (coded in ana-simple.melt) which is executed by GCC pass manager when com-
piling the file foo.c. This pass finds calls like fprintf(stdout, ...) and replaces them
with printf(...) after GCC has inlined functions [thus perhaps creating such calls]! The
melt.so plugin is hand-coded in C (in our melt-runtime.[hc] files11 - 14KLOC). The
modules warmelt*.so . . .ana*.so are coded in MELT (as source files warmelt*.melt
. . .ana*.melt which have been translated by MELT into generated C files warmelt*.c
. . .ana*.c, themselves compiled into modules warmelt*.so etc . . .).

The MELT translator (able to generate *.c from *.melt) is bootstrapped so ex-
ercises most of its features and its runtime : the translator’s source code is coded in
MELT, precisely the warmelt*.melt files (25.7KLOC), and the MELT source SubVersion
repository also contains the generated warmelt*.c (504KLOC). Other MELT files, like
ana*.melt [4KLOC, incomplete, implementing simple analysis GCC passes in MELT]

11 The module names warmelt*.so and ana*.so are somehow indirectly hard-coded in
melt-runtime.c but could be overloaded by many explicit -fplugin-arg-melt-* options.

don’t need that. The MELT translator12 is not a GCC front-end (since it produces C code
for the host system, not Generic or Gimple internal representations suited for the target
machine); and it is even able to dynamically generate, during an GCCmelt compiler in-
vocation, some temporary *.c code, run another gcc to compile that into a temporary
*.so, and load (i.e. dlopen) and execute that - all this in a single cc1 process; this
can be useful for sophisticated static analysis specialized using [28] partial evaluation
techniques within the analyzer, or just to “run” a MELT file.

Translation from MELT code to C code is fast: for instance, on a x86-64 Core2
GNU/Linux desktop system13, the 5.1KLOC file warmelt-normal.melt file is trans-
lated into warmelt-normal.c in 5.2 seconds (wall time). But the warmelt-normal.c

generated file has 164KLOC, needing 275 sec. to be compiled with gcc-4.4 -O1 -g

-fPIC. So most of the time is spent in compiling the generated C code, not in generat-
ing it. All the module’s data is built in the module starting routine14.

The MELT runtime melt-runtime.c is built above the GCC infrastructure, notably
its Ggc mark & sweep precise garbage collector (GC) [14], which is explicitly started,
and provides hooks for plugins but does not handle any local variables by itself (in
contrast with most other garbage collectors) : usually Ggc collection happens in the
GCC pass manager between passes, not inside them. But as in most applicative or func-
tional languages, MELT code tends to allocate a lot of temporary values (which often
die quickly). These values are handled by a generational copying MELT GC, triggered
by the MELT allocator when its birth region is full, and backed up by the existing Ggc
(so the old generation of MELT GC is the Ggc heap). Generational copying GCs handle
quickly dead young temporary values by discarding them at once, but require a scan
of all local variables, a write barrier, and normalization of explicit intermediate values
inside calls15. This is awkward in hand-written C code but easy to generate. A minor
MELT GC is triggered after each GCC pass coded in MELT to ensure that all live young
MELT values have migrated to the old Ggc heap, etc.

Explicit availability of local variables (and also of the current closure), required by
the MELT GC, facilitates introspective runtime reflection [20, 21] at the MELT level; this
might be useful for some future sophisticated analysis, e.g. in abstract interpretation [4,
3] of recursive functions, as a widening strategy.

The MELT runtime depends deeply upon Ggc, but does not depend much on the
details of GCC main data structures like e.g. tree16 or gimple : our melt-runtime.c

12 The translation from file ana-simple.melt to ana-simple.c is done by in-
voking gcc -fplugin=melt.so -fplugin-arg-melt-mode=translatefile

-fplugin-arg-melt-arg=ana-simple.melt etc . . . on an empty C file empty.c, only
useful to have cc1 launched by gcc!

13 A quad-core Intel Q9550 @ 2.83GHz, 6Mb cache, 8Gb RAM, fast 10KRPM Sata 150Gb disk,
Debian/Sid/AMD64.

14 In warmelt-normal.c this initializing start module melt routine has 27KLOC- including
#line directives and empty lines; its compiled size is 684kbytes (about 43% of the module’s
binary text size).

15 That is, f(g(x), y) should be normalized as τ = g(x); f(τ, y) with τ being a fresh temporary.
16 Actually GCC coretypes.h file has typedef union tree node *tree; so when we speak

of the details of tree we really mean details in tree node or some other struct tree XXX

(with various XXX) in file tree.h, etc.

can usually be recompiled without changes when GCC’s file gimple.h changes a lit-
tle, or when passes are changed or added in GCC core. The MELT translator files
warmelt*.melt (and the generated warmelt*.c files) don’t depend really on GCC data
structures like gimple. As a case in point, the major “gimple to tuple” transition 17 in
4.4, which impacted a lot of GCC files, was smoothly handled within the MELT transla-
tor.

The MELT files which are actually processing GCC internal representations (like
our ana-*.melt or user MELT code), that is code implementing new passes, have to
change only when the GCC API changed - exactly like other GCC passes. Often, since
the change is compatible with existing code, these MELT files don’t have to be changed
at all (but should be recompiled into modules).

MELT handle two kinds of things: the first-class MELT values (allocated and man-
aged in MELT’s GC-ed heap) and other stuff, which are any other data managed in C
(either generated or hand-written C code within GCCmelt). So raw long-s or tree-s are
stuff. Variables and [sub-]expressions in MELT code, hence locals in MELT call frames,
can be of either kind (values or stuff).

Since Ggc requires each its pointer to be of a gengtype- known type, values are
really different from stuff. There is unfortunately no way to implement a full polymor-
phism in MELT: we cannot have MELT tuples containing a mix of raw tree-s and MELT
objects (even if both are Ggc managed pointers). This Ggc limitation has deep conse-
quences in the MELT language (stuff sadly cannot be first-class!). And MELT cannot
realistically be [22] a statically typed language like Ocaml, because designing a type
system18 for it would require some kind of type theory of the entire GCC code base!

3 MELT linguistic devices to fit into GCC.

In this section, we explain some of the various MELT values and give, thru explained
code examples, an overview of some of the linguistic devices (idioms) provided in MELT
to match GCC internals. Matching is covered in the next section (§4).

3.1 MELT values and stuff

Every MELT value has a discriminant (at the start of the memory zone containing that
value). The discriminant of a value is used by the MELT runtime, by Ggc and in MELT
code to separate them. MELT values can be boxed stuff (e.g. boxed long or boxed tree),
closures, lists, pairs, tuples, boxed strings, etc . . . , and MELT objects. Several prede-
fined objects - e.g. CLASS CLASS, DISCR NULLRECV etc. . . - are required to be known

17 In the old days of 4.3 the Gimple representation was physically implemented in tree-s and the
C data structure gimple did not exist yet; at that time, Gimple was sharing the same physical
structures as Trees and Generic [so Gimple was mostly a conventional restriction on Trees] -
that is using many linked lists. The 4.4 release added the gimple structure to represent them,
using arrays, not lists, for sibling nodes; this improved significantly the performance of GCC
but required patching many files in it.

18 An hypothetical MELT type system should be quite complex because of the stuff vs value
dichotomy.

by the MELT runtime. As an exception, nil 19, represented by the C null pointer has
conventionally a specific discriminant DISCR NULLRECV. Discriminants are objects (of
CLASS DISCR).

Each MELT object has its class as its discriminant. Classes are themselves objects
and are organized in a single-inheritance hierarchy rooted at CLASS ROOT. Objects are
represented in C as exactly a structure with its class (i.e. discriminant) obj class, its
unsigned hash-code obj hash (initialized once and for all), an unsigned short number
obj num, the unsigned short number of fields obj len, and the obj vartab[obj len]

array of fields, which are MELT values. The obj num in objects can be set at most once
to a non-zero short. MELT and Ggc discriminate quickly values’ data-type (for marking,
scanning and other purposes) thru the obj num of their discriminant. Safely testing in
C if a value p is a MELT closure is as fast as p != NULL && p->discr->obj num ==

OBMAG CLOSURE.
MELT field descriptors, and method selectors are objects. Every MELT value (object

or not, even nil) can be sent a message, since its discriminant (i.e. its class, if it is an
object) has a method map (an hash table associating selectors to method bodies) and a
parent discriminant (or super-class). Method bodies can be dynamically installed with
(install method discriminant selector function) and removed at any time in any discrim-
inant or class. Method invocations go thru the method hash maps.

The MELT reader produces mostly objects: S-expressions are parsed as instances of
CLASS SEXPR; symbols (like == or let or x) as instances of CLASS SYMBOL; keywords
like :long or :else as instances of CLASS KEYWORD; numbers like -1 as values of
DISCR INTEGER etc.

Each stuff (that is, non-value things like long or tree . . .) have its boxed value
counterpart, so boxed gimple-s are values containing, in addition of their discriminant
(like DISCR GIMPLE), a raw gimple pointer.

In MELT expressions, literal integers like 23 or strings like "hello\n" refer to raw
:long or :cstring stuff, not constant values. To have them considered as MELT values,
we quote them, so (contrarily to other lisps) in MELT 2 6≡ ’2 : the plain 2 denotes a stuff
of c-type :long, but the quoted expression ’2 denotes the boxed integer 2 constant value
of DISCR CONSTINTEGER! As usual, a quoted symbol like ’j denotes a constant value
of CLASS SYMBOL.

To associate some MELT value to some thing, hash-maps are extensively used: so
hash tables keyed by objects, raw strings, or raw stuff like tree-s or gimple-s . . . are
values (of discriminant DISCR MAPOBJECTS . . . DISCR MAPTREES). While hash-maps
are more costly than direct fields in structures to associate some data to these structures,
they have the important benefit of avoiding disturbing existing C files of GCC. And even
C plugins of GCC cannot add for their own convenience extra fields into the carefully
tuned tree or gimple structures of GCC’s tree.h or gimple.h.

Adding a new important GCC C type like gimple 20 for some new stuff is fairly
simple: extend the melt-runtime.[ch] files appropriately and add (in MELT code) a

19 As in Common Lisp or Emacs Lisp (or C itself), but not as in Scheme, MELT nil is considered
as false, and every non-nil value is true.

20 This kind of radical addition don’t happen often in the GCC community because it usually
impacts lots of GCC files.

new predefined C-type descriptor (like CTYPE GIMPLE referring to keyword :gimple)
and additional discriminants.

The :void keyword (and so CTYPE VOID) is used for side-effecting code without
results. C-type keywords (like :void, :long, :tree, :value, :gimple, :gimpleseq,
etc...) qualify (in MELT source code) formal arguments, local variables (bound by let,
. . .), etc

MELT is typed for things: e.g. the translator complains if the +i primitive addition
operator (expecting two raw :long stuffs and giving a :long result) is given a value
or a :tree argument. And let bindings can be explicitly typed (by default they bind a
value). Within values, typing is dynamic; for instance, a value is checked at runtime to
be a closure before being applied.

Functions coded in MELT (with defun for named functions or lambda for anony-
mous ones) always return a value as their primary result. The first formal argument (if
any) and the primary result of MELT functions should be values. Secondary arguments
and results can be any things. The (multicall ...) syntax binds secondary results like
Common Lisp’s multiple-value-bind.

3.2 code chunks and primitives

These are simple constructs for C code generation.

Code chunks: They are simple MELT templates (of :void c-type) for gen-
erated C code. They are the lowest possible way of impacting MELT C code
generation, so are very seldom used (like asm in C). As a trivial example
where i is a MELT :long variable bound in an enclosing let, (code chunk sta

#{$sta# lab:printf("i=%ld\n", $i++); goto $sta# lab; }#) would be trans-
lated to {sta 1 lab: printf("i=%ld\n", curfnum[3]++); goto sta 1 lab;} the
first time it translated (i becoming curfnum[3] in C), but would use sta 2 lab the
second time, etc. The first argument of code chunk - sta here - is a state symbol, ex-
panded to a C identifier unique to the code chunk’s translation. The second argument
here, starting with #{ and ending with }# is a macro-string21 and is parsed by MELT
as an s-expression containing symbols (when preceded by a $) and strings (all the rest,
which have been read verbatim).

Primitives: They define a MELT operator by its C expansion. The unary negation negi
is defined exactly as :

(defprimitive negi (:long i)
:long :doc #{Integer unary negation of $i.}#
#{(-($i))}#)

Here we specify that the formal argument i is, like the result of negi, a :long stuff.
We give an optional documentation, and at last the macro-string for the C expansion.

21 This macro-string is exactly the s-expression (sta " lab:printf(\"i=%ld\\n\", " i

"++); goto " sta " lab; ") but is much simpler to type - don’t bother about intricate-d
string encodings, ...

Primitives don’t have state variables but are subject to normalization22 and stuff type
checking. During expansion, the formals appearing in the primitive definition are re-
placed appropriately.

3.3 c-iterators

A MELT c-iterator is an operator translated into a for-like C loop. The GCC compiler
defines many constructs similar to C for loops, usually with a mixture of macros and/or
trivial inlined functions. C-iterators are needed in MELT because the GCC API defines
many iterative conventions.

For example, to iterate on every gimple g inside a given gimple seq s GCC man-
dates

{ gimple_simple_iterator it;
for (it = gsi_start(s); !gsi_end_p(it); gsi_next(&it)) {
gimple g = gsi_stmt(it); /* do something with g */ } }

In MELT, to iterate on the :gimpleseq s obtained by the expression σ and do some-
thing on every :gimple g inside s, we can simply code (let ((:gimpleseq s σ)

) (each in gimpleseq (s) (:gimple g) ddo something with g...c)) by invoking the c-
iterator each in gimpleseq, with a list of inputs - here simply (s) - and a list of local
formals - here (:gimple g) - as the iterated things.

This c-iterator (a template for such for-like loops) is defined exactly as:

(defciterator each_in_gimpleseq
(:gimpleseq gseq) ;start formals
eachgimplseq ;state
(:gimple g) ;local formals
#{/* start $eachgimplseq: */
gimple_stmt_iterator gsi_$eachgimplseq;
if ($gseq) for (gsi_$eachgimplseq = gsi_start ($gseq);

!gsi_end_p (gsi_$eachgimplseq);
gsi_next (&gsi_$eachgimplseq)) {

$g = gsi_stmt (gsi_$eachgimplseq); }#
#{ } /* end $eachgimplseq*/ }#)

We give the start formals, state symbol, local formals and the “before” and “after”
expansion of the generated loop block. The expansion of the body of the invocation goes
between the before and after expansions. C-iterator occurrences are also normalized
(like primitive occurrences are). As MELT expressions, c-iterator uses are considered
:void since they are used only for their side effects.

Collecting higher-order functionals can easily be defined, using such c-iterators, by
incrementally constructing their results.

There are no (Clu-like) iterators definable in pure MELT; higher-order functionals
can play a similar role in practice (and MELT anonymous lambda functions are very
useful).
22 Assuming that x is a MELT variable for a :long stuff, then the expression (+i (negi x) 1)

is normalized as let α = −x, β = α + 1 in β in pseudo-code - suitably represented inside
MELT (where α, β are fresh gensym-ed variables).

3.4 modules, environments, standard library and hooks

A single *.melt source file23 is translated into a single module loaded by the MELT
run-time. The module’s start module melt generated routine [often quite big] takes a
parent environment, executes the top-level forms, and finally returns the newly created
module’s environment. Environments and their bindings are reified as objects.

Only exported names add bindings in the module’s environment. MELT code can ex-
plicitly export defined values (like instances, selectors, functions, c-matchers, . . .) using
the (export values ...) construct; macros (or pat-macros [that is pattern-macros pro-
ducing abstract syntax of patterns]) definitions are exported using the (export macro

...) construct or (export patmacro ...); classes and their fields using (export class

...) construct. Macros and pattern macros in MELT are expanded into an abstract syntax
tree, not into s-expressions.

Field names should be globally unique: this enables (get field :named name x)

to be safely translated into something like “if x is an instance of CLASS NAMED fetch its
:named name field otherwise give nil”, since MELT knows that named name is a field of
CLASS NAMED.

As in C, there is only one name-space in MELT which is technically, like Scheme,
a Lisp1 dialect[23]. This prompts a few naming conventions: most exported names of a
module share a common prefix; most field names of a given class share the same prefix
unique to the class, etc.

The entire MELT translation process[29] is implemented thru many exported defi-
nitions which can be used by clever MELT users to strongly extend the MELT language
to suite even more their own needs. Language constructs24 give total access to environ-
ments (instances of CLASS ENVIRONMENT).

Hooks for changing GCC behavior are provided (e.g. as exported primitives like
e.g. install melt gcc pass which installs a MELT instance describing a GCC pass
and registers it inside GCC), above the existing GCC plugin hooks.

The Parma Polyhedra Library [1] is already used in GCC, and has been interfaced
to MELT, so can easily be used by static analyzers using numerical abstractions and
coded in MELT.

A fairly extensive MELT standard library is available (and is used by the MELT trans-
lator), providing many common facilities (map-reduce operations; debug output meth-
ods; run-time asserts printing the MELT call stack on failure; translate-time conditionals
emitted as #ifdef; GDBM index file interface; . . .) and interfaces to GCC internals. Its
.texi documentation is produced by a generator inside the MELT translator.

When GCC will provide additional hooks for plugins, making them available to
MELT code should hopefully be quite easy.

23 MELT can also translate into C a sequence of S-expressions from memory, and then dynami-
cally load the corresponding temporary module after it has been C-compiled.

24 Like (current module environment container) and (parent module environment), etc.

4 pattern matching in MELT

4.1 using patterns in MELT

Pattern matching [15, 16, 32] is an essential operation in symbolic processing and for-
mal handling of programs, and is one of the buying features of high-level programming
languages (notably Ocaml and Haskell). And several tasks inside GCC are mostly pat-
tern matching (like simplification and folding of constant expressions)25.

Pattern matching: Patterns are major syntactic constructs (like are expressions and let-
bindings in Scheme or MELT). In MELT, a pattern starts with a question mark, which is
parsed similarly to the quote: ?x is the same as (question x) [it is the pattern variable
x], much like ’y is the same as (quote y). ? is the joker pattern (matching anything).
An expression occurring in pattern context is a constant pattern. Patterns may be nested
(thru composite patterns).

An example of pattern usage in GCCmelt: Many tasks depend on the form of [some
intermediate internal representation of] user source code, and require extracting some
of its sub-components.

For instance, our make-green optimization needs to track casting assignments, as-
signments of stdout, calls to fprintf etc. . . . This is easily coded with code like:

(let ((:gimple g dsome code to get a gimplec))
ddisplay the gimple g for debuggingc
(match g
(?(gimple_assign_cast ?lhs ?rhs)
dprocess lhs and rhs for a casting assignmentc)

(?(gimple_assign_single
?lhs
?(as ?rhs

?(tree_var_decl ?(cstring_same "stdout"))))
dprocess lhs and rhs as an assignment from stdout.c)

(?(gimple_call_2_more ?lhs
?(as ?callfndcl

?(tree_function_decl ?(cstring_same "fprintf") ?_))
?argfile ?argfmt ?nbargs)
dhandle the fprintf case to file argfile with format argfmtc)

(?_ dotherwise...c))

Of course the above code is quite naive: checking that a particular call is indeed
calling the standard fprintf by comparing the name of the called function is approxi-
mate (the user could have redefined fprintf) and inefficient. We should really test that
the fprintf was declared in <stdio.h> etc and remember its tree once we parsed its
standard declaration.

We see that a match is made of several match-cases, tested in sequence until a
match is found. Each case starts with a pattern, followed by sub-expressions which are
25 Strangely, GCC do have several specialized code generators, but none for pattern matching: so

the file gcc/fold-const.c is hand-written (16KLOC).

computed with the pattern variables of the case set appropriately by the matching of the
pattern; the last such sub-expression is the result of the entire match. Like other condi-
tional forms in MELT, match expressions can give any thing (stuff, e.g. :long . . . or even
:void, or value) as their result. Patterns may be nested like the gimple assign single

above. All the locals for pattern variables in a given match-case are cleared (before test-
ing the pattern). It is good style to end a match with a catch-all joker ? pattern. Patterns
can be a conjunction ?(and π1...πn) (matched iff π1 and then π2 . . . are matched) or a
disjunction ?(or π1...πn) (matched iff π1 or else π2 . . . is matched) of sub-patterns πk.

The ?(as ...) pattern syntax is built-in26 : when matching ?(as ?v π) to some
thing τ , the pattern variable v is set to τ and then τ is matched against the pattern π.

A pattern is usually composite (with nested sub-patterns) and has a double role:
first, it should test if the matched thing fits; second, when it does, it should extract
things and transmit them to eventual sub-patterns; this is the fill of the pattern. The
matching of a pattern should conventionally be without side-effects (other than the fill,
i.e. the assignment of pattern variables).

Patterns may be non-linear: in a matching case, the same pattern variable can
occur more than once; then it is set at its first occurrence, and tested for identity27

with == in generated C code on all next occurrences. This is useful in patterns like
?(gimple assign single ?var ?var) to find assignments of a variable var to itself.

4.2 C-matchers and fun-matchers

The c-matchers are one of the building blocks of patterns - much like primitives are
one of the building blocks of expressions. Like primitives, c-matchers are defined as a
specialized C code generation template. In the example above (§4.1), most composite
patterns involve c-matchers: cstring same . . . gimple assign cast are C-matchers.

Like for every pattern, a C-matcher defines how the pattern using it should perform
its test, and then how it should do its fill.

A simple example of c-matcher is our cstring same: some :cstring stuff σ matches
the pattern ?(cstring same "fprintf") iff σ is the same as the const char* string
"fprintf" given as input to our c-matcher. This c-matcher has a test part, but no fill
part (because used without sub-patterns).

(defcmatcher cstring_same (:cstring str cstr) () strsam
:doc #{The $CSTRING_SAME c-matcher match a string

$STR iff it equals to the constant string $CSTR.
The match fails if $STR is null or different from $CSTR.}#
#{ /*$strsam test*/ ($str && $cstr && !strcmp($str, $cstr)) }#)

26 Much like expressions like (lambda ...) or (and ...) or (let ...) or (match ...) or (instance
...) are expanded thru a classical macro machinery (into some appropriate MELT abstract
syntax), patterns with special pattern operators, including ?(as ...), ?(and ...), ?(or ...), or
?(instance ...) are expanded thru pattern-macros or “patmacros” into their abstract syntax.
The MELT language can be significantly extended by intrepid users defining their own macros
or patmacros.

27 We don’t test for equality of values or other things, knowing that λ-terms equality is unde-
cidable, and acknowledging that deep equality compare of ASTs like tree or gimple is too
expensive.

The first formal str is the matched stuff, then cstr is an input argument. strsam
is a state symbol. The empty () indicates lack of sub-patterns. The macro-string is
expanded into the test: we ensure both str & cstr are non-null to avoid crashing inside
strcmp. There is no “fill” part, because there are no sub-patterns involved.

A more complex (and GCC specific) example is the gimple assign cast c-matcher
(to filter casting assignments in compiled code). It defines both a testing and a filling
expansion thru two macro-strings:

(defcmatcher gimple_assign_cast
(:gimple ga) (:tree lhs rhs) gimpascs
#{ /*$gimpascs test*/($ga && gimple_assign_cast_p ($ga)) }#
#{ /*$gimpascs fill*/ $lhs = gimple_assign_lhs($ga);

$rhs = gimple_assign_rhs1($ga); }#)

Here ga is the matched gimple, and lhs rhs are the output formals: they are assigned
in the fill expansion to transmit GCC tree-s to sub-patterns!

C-matchers are a bit like Wadler’s views[32], but are expanded into C code. MELT
also has fun-matchers which similarly are views defined by a MELT function returning
a non-nil value if the test succeeded with several secondary results giving the extracted
things to sub-patterns.

For example the following code defines a fun-matcher isbiggereven28 such as the
pattern ?(isbiggereven µ π) is matching a :long stuff σ iff σ is a even number,
greater than the number µ, and σ/2 matches the sub-pattern π. We define an auxiliary
function matchbiggereven to do the matching [we could have used a lambda]. If the
match succeeds, it returns a true (i.e. non nil) value (here fmat) and the integer to
be matched with π. Its first actual argument is the fun-matcher isbiggereven itself.
The testing behavior of the matching function is its first result (nil or not), and the fill
behavior is thru the secondary results.

(defun matchbiggereven (fmat :long s m)
; fmat is the funmatcher, s is the matched σ, m is the minimal µ

(if (==i (%iraw s 2) 0)
(if (>i s m) (return fmat (/iraw m 2)))))

(defunmatcher isbiggereven (:long s m) (:long o) matchbiggereven)

The fun-matcher definition has an input formals list and an output formal list, to-
gether defining the expected usage of the fun-matcher operator in patterns.

Both c-matchers and fun-matchers can also define what they mean in expression
context (not in pattern one). So the same name can be used for constructing expressions
and for destructuring patterns.

4.3 Matching MELT objects

In addition of the c-matcher based view-like patterns, MELT also have matching on
objects (using the ?(instance ...) syntax, . . .) in a way similar to [8, 13]. For instance,
the documentation generator has patterns like:

28 Our isbiggereven could be defined as a c-matcher!

?(instance class_src_definstance :sdef_name ?dnam
:sdef_doc ?(instance class_sexpr :loca_location ?docloc

:sexp_contents ?docont)
:sobj_predef ?predef :sinst_class ?icla)

In such an ?(instance ...) pattern, the [super-]class of objects to be matched is
given, and some of the fields to be extracted are listed with their appropriate sub-
patterns.

There is also a ?(object ...) pattern, which is similar to the instance construct
above, except that the specified class should be the exact discriminant of the matched
value (so instances of sub-classes) should not be allowed.

4.4 Pattern matching implementation in MELT

While the previous sub-sections (§4.1,4.2) explained matching for a MELT user, we give
here a short overview of the implementation of MELT matching facility, and how match

expressions are translated into C.

The design of MELT patterns and the implementation29 of their translation was
painful to get right! But pattern matching optimization is still young [9, 15, 17, 16, 13].
The pattern language of MELT is designed semi-empirically with practical concerns in
mind, that is the ability to filter easily complex GCC internal structures (i.e. stuff) and
MELT values. Match-cases should be carefully ordered by the user, in particular be-
cause some c-matchers could be more general than others (and MELT has no way to
know that). For instance, every gimple casting assign is an assign.

Some features are still missing in the MELT pattern sub-language, notably the ability
to filter discriminant-s (or classes) of filtered values (or objects), when-patterns (i.e.
patterns with predicative conditions on pattern variables of the match-case), regular
expressions on strings, etc. We intend to add such features when needed.

To translate a match expression, we first compute the set of pattern variables in-
side each match-case’s pattern [using the scan pattern selector]. Then, a control tree
is progressively constructed; its nodes are normalized tests (usually having both then
and else successors), and the normalized sub-expression parts [inside match-cases] of
the entire match expression are leafs. To avoid repeating the same test on the same
thing twice, each matched intermediate thing (either the topmost match-ed thing, or
any thing extracted in the fill step of elementary matching operators) is memoized with
the sequence of tests on it. When we consider adding a new elementary test into the
graph (that is, a c-matcher or fun-matcher test, an “instance-of” test, etc . . .), we check
that the tested thing does not have already that test, and if it does we avoid duplicating
it. The expression parts in match-case are considered as terminating “always-succeed”
tests.

The match translator heavily uses higher-order functionals: the normal pattern

selector gets a closure which is positioning the newly built tester appropriately in the
control graph.

29 In part of the file warmelt-normal.melt - which handles normalization of expressions, and
all of file warmelt-normatch.melt which normalize matchers.

Once the control tree is fully constructed it can be easily translated into a graph of
elementary C control blocks with many if-s and goto-s. Perhaps generating switch-s
C statements [25] should sometimes be considered, notably using when available the
fixed hash-code of constant object appearing in patterns.

5 Conclusions and future work

This work demonstrates that a huge compiler software like GCC can nevertheless be ex-
tend with a higher-level applicative language (providing anonymous and higher-order
functions, objects with message passing, pattern-matching, reflection) by trying to de-
sign linguistic devices fitted to the software’s coding style and practice and generating
suitable C code. It is even surprising that no code generator has been widely available
inside GCC middle-end before MELT. We believe this approach, provided that a garbage
collector can be used or added, could be useful on other big mature software (at least
when they permit plugins) when embedding a scripting language (or interfacing with
another higher-level language implementation) is not easy, as is often the case with huge
legacy software.

We have thus shown that the considerable existing assets of GCC can be used in
extensions coded in a higher-level language, while following quite easily its evolution.
This should increase the productivity of people interested in developing plugins for
GCC. Of course, understanding the internals and architecture of GCC is still needed
(when designing a pass - even coded in MELT- choosing its position in the jungle of all
existing passes is still challenging).

The various linguistic devices (matchers, iterators, chunks, primitives) described in
this paper should be general enough to be ported to other projects, when considering
extending huge legacy software thru a more expressive language translated into C.

The pattern matching facilities are especially important in compilers, because many
“filtering” operations on some GCC internal representation can be perceived as a pattern
matching process.

Our MELT implementation is freely available (under GPLv3 licence) [27].
Future work will mostly include the use of MELT technology for compiler related

issues, but MELT translator will still be extended and adapted when appropriate (possi-
ble missing language features include exceptions and persistence -perhaps thru LTO-;
but GCC never uses them - i.e. longjmp in C - today). We should work in 2010-2011,
within the OpenGPU French project, on improving GCC, thru modules to be coded in
MELT, by detecting those [vectorial] routines in user code (input to GCC) which could
take advantage of GPUs, and translating parts of it to OpenCL.

acknowledgments: This work has been partly funded, up to match 2009, by the French Ministry
of Industry (MINEFE/DGCIS) thru the European ITEA project (IP05012) GlobalGCC http:

//ggcc.info/.

References

1. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a Complete
Set of Numerical Abstractions for the Analysis and Verification of Hardware and Software Systems.
Science of Computer Programming, 72(1–2):3–21, 2008.

2. P. Collingbourne and P. Kelly. A compile-time infrastructure for GCC using Haskell. In
GROW09 workshop, within HIPEAC09, http://www.doc.ic.ac.uk/˜phjk/GROW09/, Pa-
phos, Cyprus, january 2009.

3. P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Logic and Computation,
2(4):511–547, Aug. 1992.

4. P. Cousot and R. Cousot. Basic Concepts of Abstract Interpretation, pages 359–366. Kluwer
Academic Publishers, 2004.

5. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The
ASTRÉE Analyser. In Proc. ESOP’05, volume LNCS 3444, pages 21–30, Edinburgh, Scot-
land, April 2005.

6. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Combi-
nation of abstractions in the ASTRÉE static analyzer. In M. Okada and I. Satoh, editors,
Eleventh Annual Asian Computing Science Conference (ASIAN’06), pages 1–24, Tokyo,
Japan, LNCS, Dec. 6–8 2006. Springer, Berlin.

7. P. Cuoq, J. Signoles, P. Baudin, R. Bonichon, G. Canet, L. Correnson, B. Monate, V. Pre-
vosto, and A. Puccetti. Experience report: Ocaml for an industrial-strength static analysis
framework. In ICFP ’09: Proceedings of the 14th ACM SIGPLAN international conference
on Functional programming, pages 281–286, New York, NY, USA, 2009. ACM.

8. B. Emir, M. Odersky, and J. Williams. Matching Objects with Patterns. In ECOOP, pages
273–298, 2007.

9. C. L. Forgy. Rete: a fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence, 19:17–37, 1982.

10. GCC community. GCC internals doc. http://gcc.gnu.org/onlinedocs/gccint/,
september 2009.

11. T. Glek and D. Mandelin. Using GCC instead of Grep and Sed. In GCC Summit, pages
21–32, Ottawa, june 2008.

12. D. Guilbaud, E. Goubault, A. Pacalet, B. Starynkévitch, and F. Védrine. A simple abstract in-
terpreter for threat detection and test case generation. In WAPATV’01, with ICSE’01, Toronto,
2001.

13. M. Hirzel, N. Nystrom, B. Bloom, and J. Vitek. Matchete: Paths through the pattern matching
jungle. In PADL, pages 150–166, 2008.

14. R. Jones and R. Lins. Garbage Collection (algorithms for automatic dynamic memory manage-
ment). Wiley, 1996.

15. F. Le Fessant and L. Maranget. Optimizing pattern-matching. In Proc. 2001 ICFP. ACM
Press, 2001.

16. L. Maranget. Warnings for pattern matching. J. Functional Programming, 17, May 2007.
17. L. Maranget. Compiling pattern matching to good decision trees. September 2008.
18. G. Marpons-Ucero, J. Mariño-Carballo, M. Carro, Á. Herranz-Nieva, J. J. Moreno-Navarro,

and L.-Å. Fredlund. Automatic coding rule conformance checking using logic programming.
In P. Hudak and D. S. Warren, editors, PADL, volume 4902 of Lecture Notes in Computer
Science, pages 18–34. Springer, 2008.

19. B. Monate and J. Signoles. Slicing for security of code. In TRUST, pages 133–142, 2008.
20. J. Pitrat. Implementation of a reflective system. Future Gener. Comput. Syst., 12(2-3):235–

242, 1996.
21. J. Pitrat. Artificial Beings (the conscience of a conscious machine). Wiley / ISTE, march 2009.

22. F. Pottier. private communication, september 2008.
23. C. Queinnec. Lisp in Small Pieces. Cambridge Univ. Pr., New York, NY, USA, 1996.
24. N. Ramsey and S. P. Jones. A single intermediate language that supports multiple imple-

mentations of exceptions. In Proc. PLDI ’00, pages 285–298, New York, NY, USA, 2000.
ACM.

25. R. A. Sayle. A superoptimizer analysis of multiway branch code generation. In GCC Summit,
pages 103–116, Ottawa, june 2008.

26. M. Sperber, R. K. Dybvig, M. Flatt, A. Van Straaten, R. Findler, and J. Matthews. Revised6

report on the algorithmic language Scheme. J. Functional Programming, 19(S.1):1–301,
2009.

27. B. Starynkevitch. MELT code [GPLv3] within GCC. http://gcc.gnu.org/wiki/

MiddleEndLispTranlator and svn://gcc.gnu.org/svn/gcc/branches/melt-branch,
2006-2009.

28. B. Starynkevitch. Multi-stage construction of a global static analyzer. In GCC Summit, pages
143–156, Ottawa, july 2007.

29. B. Starynkevitch. Middle End Lisp Translator for GCC, achievements and issues. In
GROW09 workshop, within HIPEAC09, http://www.doc.ic.ac.uk/˜phjk/GROW09/, Pa-
phos, Cyprus, january 2009.

30. G. L. Steele. COMMON LISP: the language. Digital Press, 1984. With contributions by
Scott E. Fahlman and Richard P. Gabriel and David A. Moon and Daniel L. Weinreb.

31. A. Venet and G. Brat. Precise and efficient static array bound checking for large embedded
C programs. In PLDI ’04: Proceedings of the ACM SIGPLAN 2004 conference on Program-
ming language design and implementation, pages 231–242, New York, NY, USA, 2004.
ACM Press.

32. P. Wadler. Views: a way for pattern matching to cohabit with data abstraction. In Proc.
POPL ’87, pages 307–313, New York, NY, USA, 1987. ACM.

$Id: MELT-Basile-Starynkevitch-CC2010.tex 112 2010-01-23 10:10:17Z basile018 $

