
Scalable Visualization of Model Differences

Sven Wenzel
Software Engineering Group

University of Siegen, Germany
wenzel@informatik.uni-siegen.de

ABSTRACT
If large models are compared their difference can contain a
huge number of local changes. Conventional methods for
displaying differences cannot reasonably handle such large
differences. This paper proposes a solution to this prob-
lem. Our approach is based on the concept of polymetric
views and extends it in two ways: firstly, we propose met-
rics for differences which quantify properties of differences
and distinguish relevant from irrelevant changes. Moreover,
we propose new graphical features of polymetric views. This
combination provides a scalable presentation of differences
which makes the changes of large models comprehensible.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—product metrics;
D.2.9 [Software Engineering]: Management—software con-
figuration management

General Terms
Management, measurement

Keywords
Model-driven development, difference computation, metrics

1. INTRODUCTION
In model-driven engineering developers work mainly or

only with models. The term model is not restricted to the
diagram types of the widely accepted Unified Modeling Lan-
guage (UML), but it also includes domain specific languages
such as Matlab/Simulink diagrams in automotive engineer-
ing. According to the trend of growing developer teams
working concurrently, the ability to calculate differences be-
tween models became very important. Differencing is nec-
essary for comprehension of changes, especially in collabo-
rative work.

Experience shows that models in industrial applications
become very large. The size of these models leads to two

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CVSM’08, May 17, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-045-6/08/05 ...$5.00.

problems: firstly to compute their difference sufficiently fast
– a suitable algorithm has been proposed in [5] – and sec-
ondly to present the difference to a developer. Conventional
methods of displaying differences fail with large differences:
they let the user drown in a plethora of small changes, and
they are based on a graphical display of one or both of the
compared models, which need too much space. Users need
first an overview and must be enabled to capture the rele-
vant changes.

We propose a scalable presentation of model differences
based on polymetric views [2]. Polymetric views provide
a compact presentation of metrics by combining up to five
metrics in one single view. Metrics are a widely used ap-
proach for getting an overview of large systems. They are
functions that map software characteristics onto numerical
values. We introduce difference metrics as functions that
map changes in specific model elements onto numerical val-
ues; these metrics enable us to count, aggregate, or classify
changes according to their relevance. Metrics map a dif-
ference onto a data set which is much smaller and better
comprehensible than the complete difference. The visualiza-
tion of these data in polymetric views supports developers
and maintainers in getting a first impression of the changes
between two versions of a large model.

Section 2 discusses background information about differ-
ence presentation and polymetric views. In Section 3 we de-
fine requirements for difference metrics. Section 4 describes
the computation of metrics, while Section 5 focuses on their
visualization. Finally, we present a prototype and give ex-
amples in Sections 6 and 7.

2. BACKGROUND

2.1 Presentation of Differences
Model differences can be presented to the user in various

ways. We can differentiate existing methods of presentation:
The textual presentation lists the differences in form

of plain text or in some structured format, e.g. XML. The
output can be very precise and can be arbitrary large. This
method of presentation is applicable to all types of differ-
ences. However, it is very difficult, or even impossible, to be
read by human readers.

Differences can also be displayed in an interactive list
or tree view of local changes. The view shows all model
elements in a list or in a tree if they have a hierarchical
structure. Small icons or labels indicate for each element
whether it was inserted, deleted, changed. Presentation of
moves is difficult. Again this presentation differs from the

41

visual language of the compared models. Furthermore one
gets lost in a long list if the inspected system is large. Op-
tionally, the view can be filtered to show changed elements
only, however, then one can hardly comprehend the context
of changes.

Multiple windows and an interactive list of changes
enhance the previous presentation method. Diagrams of
each model are shown in separate windows of a modeling
tool beside the list of changes. By selecting changes in the
list, the corresponding elements are highlighted. Hence, one
can better inspect the context of changes and the user’s per-
ception of modeling language is kept. However, the list of
changes is still very long and does not give a good overview.

In an integrated parallel display two diagrams are
shown beside each other and corresponding elements can
either be identified by their position or by connecting lines.
In the former case insertions and deletions lead to spacing
and moves cannot be displayed. The presentation method
is limited by display size as diagrams often require at lot
of space. Synchronized scrolling of both diagrams can help,
but hinders overviewing the difference.

The unified diagram view displays the computed dif-
ferences as a unified (i.e. merged without resolving conflicts)
diagram in usual shape. Elements which exist only in one of
the models are colored differently, e.g. red and green. Up-
dates elements are marked with a third color; unchanged
elements remain black. Moves cannot be displayed suffi-
ciently. If one knows the compared models in detail, one
can overview all changes easily. However, the approach does
not scale up to large models, due to display limitations.

2.2 Polymetric Views
Metrics map software properties onto numerical values.

However, the presentation of pure numbers, e.g. in a table,
is not sufficient to get an overview. In order to query dif-
ferent aspects, to find outliers, or to inspect the context of
properties, the table would have to be sorted in many dif-
ferent ways. Therefore, Lanza has introduced the concept
of polymetric views [2]. In this concept, all entities or a
selection of entities of a software system such as classes or
operations are represented by rectangles. Up to five metrics
can be mapped onto the rectangles’ height, width, color, and
horizontal / vertical position. Hence, software metrics can
be visualized in a way that large software systems become
accessible; outliers, e.g. classes with an abnormal number of
methods, can be located at a glance. Lanza defines vari-
ous polymetric views for different issues of software analy-
sis, e.g. the system hotspots view to identify extraordinarily
large classes. Furthermore, edges can be used in polymetric
views to show relations such as inheritance between entities,
e.g. in the system complexity view showing a class hierarchy.
Different layouters can be chosen to arrange the nodes on a
screen.

2.3 Change Metrics
Demeyer et al. [1] have introduced the term change met-

rics in context of detecting software refactorings. However,
they compute object-oriented metrics of parts of two ver-
sions of a software system and inspect the differences be-
tween the produced values subsequently.

This combination of metrics and software changes is sig-
nificantly different from our work, as they measure changes
of software metrics resulting from software changes. We do

not compute the difference between metrics, but we compute
metrics on differences.

3. REQUIREMENTS

3.1 Graph Representation of Models
For the purpose of computing difference metrics we use

a very simple data model. We translate the models to be
compared into attributed, directed, typed graphs. Types are
assigned to each node and each edge. Edge types can fur-
thermore be divided into references and part-of-relationships
that span a tree. A tree edge points from a parent node to
its child. In addition, nodes can have attributes. Each at-
tribute consists of a name-value pair.

3.2 Difference Computation
Our approach does not compute differences itself; it rather

delegates that task to a separate differencing library. We re-
quire the library to provide us with a table of corresponding
nodes of both graphs. We furthermore assume the table to
contain information whether and how the nodes have been
changed. Corresponding nodes that differ in their attribute
values are called updates. The table entry contains both
the old and the new value. Corresponding nodes, whose ref-
erences are different in the two versions, have a reference
change with references to both targets. Nodes that have
changed their parent nodes get a move difference with a
reference to the old parent node. Nodes that have no en-
try in the correspondence table are considered to be struc-
turally different, i.e. they are inserted if they exist only in
the newer version or deleted if they exist only in the older
version. Nodes that show no changes and exist in both ver-
sions are tagged as equal. Optionally, the correspondence
table may contain information about similarities between
each corresponding pair of nodes. However, from our point
of view the similarity is just a numerical value between 0
and 1; its computation is concern of the differencing library.

4. DIFFERENCE METRICS
Polymetric views display metrics assigned to entities. So

it is advisable to compute metrics assigned to the nodes of
the model’s graph representations. Therefore, we work with
a virtual unified graph. It contains one node for each pair
of corresponding nodes and additionally the nodes of each
graph that are not involved in correspondences. We compute
metrics for each node of the unified graph.

In terms of computation of metrics, we can differentiate
two groups of metrics. The first group can be seen as non-
domain-specific. All metrics of that group can be derived
directly from the list of types in the graph, i.e. the meta-
model. The second group, so-called domain-specific metrics,
take model semantics into account. Hence, they require ad-
ditional information that exceeds standard metamodel in-
formation based on domain-knowledge.

4.1 Non-domain-specific Metrics

4.1.1 Metrics that count changed nodes
Obviously, the different types of changes can be counted

for each node. We call the resulting metrics trivial. Trivial
metrics can be computed for each node and for each change
type. An example in class diagrams is the number of up-
dates of a node of type operation; an example in an activity

42

diagram is the number of reference changes of a node of type
transition, or the number of structural changes of a node of
type activity. These metrics usually return rather small val-
ues. Frequently, the value can only be 0 or 1 depending on
whether the node was changed or not. Due to the small
values, it is advisable to accumulate trivial metrics in the
corresponding parent nodes, e.g. to retrieve the number of
updated operations for each class. On this basis, we define
four kinds of accumulated metrics:

Changed children. This metric counts all child nodes that
belong to either of the difference types Update or Reference
change. For example, the number of parameters changed in
an operation.
Inserted children. This metric counts all child nodes that
belong to the change type Structural change and exist only
in the second graph, as well as all child nodes of change type
Move, whose final parent is the current node. For example,
the number of parameters added to an operation.
Removed children. In contrast to added children, this
metric counts all child nodes that belong to the change type
Structural change and exist only in the first graph, as well as
all child nodes of change type Move, whose original parent
was the current node. For example, the number of parame-
ters removed from an operation.
Unchanged children. The number of child nodes that are
marked with Equal. For example, the number of parameters
of an operation that have remained unchanged.

The values computed on children can be summed up in
the parent node and any ancestor node in the part-of hierar-
chy. For example, one can calculate the number of inserted
operations in each package.

4.1.2 Differentiation of updates & reference changes
In order to better differentiate changed elements, we pro-

vide more fine-grained metrics counting attribute and refer-
ence changes. The metrics are defined by the set of attribute
types and reference types existing in the graphs. For each
kind we can easily count the number of changes, and the
number of unchanged instances respectively.

A node contains only one attribute of each type, but it
may contain several references of the same type. However,
their number stays rather low. Hence, the metrics count-
ing attribute and reference changes are often either 1 or 0,
which indicates whether there is a change or not. Again we
accumulate the computed values in ancestor nodes in the
part-of hierarchy.

For example, in class models we can count the number of
changes of classes’ visibilities in a package. In state charts we
can count the number of transitions with changed target1.

4.2 Domain-specific Metrics
The metrics presented so far are non-domain-specific in

the sense that they are solely based on the graph structure
of the models, their underlying metamodel (most notably
part-of relationships), and the structure of a difference as
explained in Section 3.2. Metrics defined on this basis can
be called ”syntactical” because they do not consider the im-
portance of changes, which depends on the semantics of a
model type. For example, the following changes are both
simple attribute updates: a) the change of the name of a

1In the UML metamodel the type transition has associations
(i.e. references) pointing to source state and target state.

<Nodetype name="operation">

<Attribute name="name" update="medium"/>

<Attribute name="isAbstract" update="critical"/>

<Attribute name="ownerScope" update="medium"/>

<Attribute name="visibility" ordered="true"

values="private,package,protected,public"

increase="trivial" decrease="critical"/>

<Reference name="returns" change="critical"/>

<NestedType name="parameter" insert="medium"

remove="medium"/>

</Nodetype>

Figure 1: Part of the domain-specific specification
of the significance of attribute updates

parameter of an operation in a class, b) the change of the
visibility of an operation. Obviously, the latter change can
have much more significant consequences and is more dan-
gerous. A designer who wants to get an overview of how a
model as changed from one version to the next, is mainly
interested in the significant changes.

The significance of a change depends on the semantics of
a model type and cannot be deduced from metamodels such
as those used in the UML specification – these metamodels
define only the syntactical structure of models. Information
about the significance of changes must therefore be speci-
fied separately; this information can be stored in arbitrary
ways, for example as an extension of data which represent
the metamodel of a model type.

In addition to the metamodel, the significance of a change
also depends on the purpose of difference analysis. Hence,
we cannot propose a classification which holds for all pur-
poses. For instance, changes of owner scope might be irrel-
evant in analysis, but critical in design.

4.2.1 Specification of the Significance of Changes
We propose to classify changes according to the following

categories: critical, medium, and noncritical. An example is
given in Figure 1; we have used an XML representation of
the specification here. We support individual classification
of updates for each attribute type of each model element;
the same applies to reference changes.

Many metaattributes have ordered domains, for example
visibility has the ordered domain (private, protected, pack-
age, public). In such cases, the significance of a change can
depend on the direction of the change, i.e. whether the value
is increased or decreased. We propose to define the signif-
icance of attribute updates separately for the increase and
decrease. An example is given in Figure 1.

Similarly one can classify insertion, deletion, or move of
subelements differentiated by different element types. We
support to define different classifications for each element
type with respect to its parent element. For example, the in-
sertion and removal of operations in classes can be weighted
different; in interfaces in turn these changes can be weighted
different again.

4.2.2 Counting Changes of Different Significance
Given a classification we can easily declare a change to be

critical, medium, or noncritical. For each model element we
can sum up the number of changes of a certain class. Fur-
thermore, we can differentiate between the types of changes.

43

Thereby, we produce metrics such as number of critical up-
dates or number of noncritical insertions. If we also divide
by the types of model elements, we can produce a large num-
ber of metrics. Once again the values can be accumulated in
parent nodes and other ancestors. For example, we can cal-
culate for each class in a package how many of its operations
have been changed critically.

4.3 Similarity Metric
We assume that the differencing algorithm provides us

with the similarity sim(nv1, nv2) of each pair of correspond-
ing nodes. A similarity value of 0 expresses that the nodes
are not similar at all, the value 1 indicates identical proper-
ties. Since high values in all other metrics express dissimi-
larity, we transform this value into the degree of change as
follows:

DoC(n) = 1− sim(nv1, nv2), (1)

4.4 Aggregation of Metrics
In addition to accumulation of values by summation, it

is possible to define more specific metrics in grandparent
nodes and their ancestors using other aggregation functions.
In particular, one can compute for each node the maximum,
minimum and average number of changed, added, removed,
and unchanged grandchildren. Obviously, children can again
be filtered by their type and other metrics can be aggregated
similarly.

An example is given by the maximal number of changed
parameters in the operations of one class. Another example
is the average number of removed attributes in all classes
of one package. These aggregated metrics enable a better
assessment of differences.

Aggregation of the degree of change is especially interest-
ing. The average degree of change and the maximal degree
of change of direct children or grandchildren can give use-
ful hints at the character of changes. E.g. similar average
and maximum values indicate uniform changes, while high
maximum and low average values indicate changes to spe-
cific subelements. Furthermore, the similarity of two ele-
ments computed during difference computation can be de-
fined arbitrarily and may aggregate the similarities of all
their subelements. For example, the similarity of two classes
could be defined by their local properties, the similarities of
their attributes, and similarities of their operations. In con-
trast to that, the aggregated degree of change can focus on
one particular element type, e.g. average DoC of operations
of a class.

5. POLYMETRIC VIEWS FOR
DIFFERENCE VISUALIZATION

In order to assess differences of two model versions, we
can define four key aspects for visualization:

1. to clearly point out the location of changes,

2. to measure the amount of changes,

3. to show the significance of changes, and

4. to distinguish the relevance of changes.

The first two aspects lead to a distinction between model
elements with changes and elements without changes. If all
elements of a certain type are displayed on one screen, one

must be able to identify the elements with most changes im-
mediately. Depending on aspect of analysis one large modi-
fication does not consequently weigh more than many small
changes. Hence, the significance of a change must be recog-
nizable. However, the relevance of a change is often a matter
of opinion.

According to these aspects we can define different poly-
metric views focusing on the changes of different model ele-
ments by assigning the values computed by difference met-
rics to rectangles’ properties and choosing appropriate lay-
outers. In contrast to Lanza’s definition we also assign
a color to the rectangles’ frames expressing the difference
type of the visualized node itself: Yellow indicates updates,
green stands for insertions, red for deletions, blue shows that
the node has been moved, and magenta expresses reference
changes. Nodes that belong to multiple difference types,
e.g. nodes that have been moved and updated, are framed
in cyan. Unchanged nodes, i.e. nodes belonging to difference
type equal, are left black.

Experience has shown that difference metrics for them-
selves do not always provide enough information about the
relevance of changes. Often developers have to observe the
modifications in the context of the model itself, e.g. the num-
ber of changes of a class with regard to the usage of this class.
Hence, conventional software metrics should always be in-
cluded in difference metrics analysis. These metrics can be
encoded alongside difference metrics in one polymetric view.

As most polymetric views are applicable to virtually all
node types of our graph representation of models, it is impos-
sible to define a fixed set of views. Each software project has
individual characteristics that have to be considered when
analyzing changes of their models. Hence, we encourage a
free definition of user specific views. Some example views
are presented in Section 7.

An interesting observation we made is the fact that poly-
metric views of difference metrics should not be treated as
independent from each other, but should be combined in an
interactive process instead. The navigation from one view to
another based on information gathered from looking at the
first view has proven to be beneficial. In particular, the nav-
igation from views representing superordinate model entities
such as packages or classes to views representing subordinate
entities such as operations or attributes is very useful as we
can identify larger entities to be examined in more detail in
a subsequent step.

6. TOOL IMPLEMENTATION
We have implemented our approach in a prototype based

on Eclipse. A screenshot is shown in Figure 2. For differ-
ence computation it uses the SiDiff framework [5], which
provides a highly configurable, similarity-based differencing
algorithm for graph-based documents. Our tool is struc-
tured as follows: In the upper left one can select the model
documents to be compared. The documents are loaded and
transformed into the graph representation (cf. Section 3.1).
The SiDiff framework is called to compare both graphs. Fi-
nally, metrics are computed based on the resulting differ-
ence.

In the lower left the user can choose between various poly-
metric views. The visualization itself is presented in the
main window. Tool tips and the properties view on the lower
right provide additional information such as exact values of
metrics, entity names, and the actual changes.

44

Figure 2: Difference metrics visualization tool

To focus the analysis on a certain part of the compared
models, one can select multiple entities in order to filter the
data to be represented. The selection can either be made in
a selection tree on the left or by clicking into the view.

The definition of new polymetric views and the manipu-
lation of existing view definitions are handled by a separate
view editor. The tool supports integration of standard soft-
ware metrics into the views, which allows analysis of differ-
ences in their context.

7. EXAMPLES
In the following we will present some polymetric views for

differences. As explained above one cannot define the ulti-
mate set of views. Nonetheless, we evaluated the difference
metrics and their visualization in daily practice by taking
the following real scenarios as examples. However, this is
not an empirical case study in the strict sense, as we do not
measure user perceptions or psychological recognition.

7.1 Differences at a glance
Figure 3 gives an example of a visualization that shows

all changes in one view. The view definition is given below
the figure.

Here, we compare two class diagrams that describe the
implementation of the UML metamodel in the modeling
tool Fujaba, namely releases 4.0.1 and 4.1.0. Although,
the figure is very small – i.e. the same as having a larger
figure with more model elements being displayed – we can
clearly identify packages containing differences. The three
larger rectangles in the lower center represent the packages
de.uni_paderborn.fujaba.uml and its subpackages action
and unparse.

7.2 Usage of datatypes
Figure 4 shows a polymetric view to overview the usage

of datatypes. It shows the different datatypes and their
amount of usage in two versions of a design model of the
data model of a history analysis component of the SiDiff
framework. The black colored datatype on the left hand
side (ByteArray) has been removed from one version to the
next as indicated by its red (gray) frame. However, this
change is not critical, since the datatype was no longer used
as shown by the rectangle’s height.

Nodes: Package
Edges: Package → sub-package
Metrics: · No. of direct children (width)

· No. of differences of direct children (height)
· Average DoC of direct children (color)

Sorting: Name

Figure 3: Differences at a glance

Nodes: Datatype
Metrics: · Number of differences (width)

· Number of uses of this datatype (height)
· Degree of change (color)

Sorting: Degree of change

Figure 4: Changes of used datatypes

7.3 Navigation between views
As already mentioned, the views for difference metrics

support navigation from an overview of all changes down-
wards to fine-grained difference analysis.

In the following examples we analyzed two versions of
the drawing framework JHotDraw, namely from 2001/07/03
and 2001/10/252. In order to get very large and fine-grained
models, we enriched the class diagram metamodel by a new
element type statement, which is subelement of operation.
Each statement represents one source code statement and
may have a call reference to an operation. The models have
been generated by parsing the Java-AST.
Step 1: Distribution of changes

The view defined in Figure 5 aggregates changes in an
average metric (color) and provides an overview of changes
per package. The package structure is shown as a tree. The
changes of operations and attributes in the packages’ classes
are encoded in the heights and widths of the package nodes.
Here, the classes of the package CH.ifa.draw.standard, i.e.
the second from the right on the lowest level, show the most
changes of attributes and operations. Hence, one should
navigate into this package for a more detailed inspection.
Step 2: Relevant changes of classes

Figure 6 shows the ratio between changed and unchanged
statements for each class of the previously selected pack-
age CH.ifa.draw.standard. Particularly notable are classes
with many changes on statements, i.e. the three classes on
bottom of the representation (from left to right: Connec-

tionTool, StandardDrawingView, and CompositeFigure).
The number of uses of a class is an indicator for its relevance

2There have been no CVS commits between these dates.

45

Nodes: Package
Edges: Package → sub-package
Metrics: · No. of changes of class operations (width)

· No. of changes of class attributes (height)
· Average difference of all children (color)

Sorting: Name

Figure 5: Packages that contain changes

Nodes: Class
Metrics: · Number of unchanged statements (width)

· Number of changed statements (height)
· Number of uses of this class (color)

Sorting: Number of unchanged statements

Figure 6: Statements per class

while the breakdown of statements by classes is required for
change localization.
Step 3: Relevant changes of attributes

In the previous example we identified three classes that
might contain interesting changes. In Figure 7 we take a
deeper look at their attributes by selecting those classes for
exclusive inspection. Here, several attributes have been in-
serted, mainly into the class StandardDrawingView; their
border is colored green (black). In ConnectionTool five lo-
cal attributes (i.e. the yellow (light gray) marked) have been
renamed from fXXX to myXXX.

7.4 Detection of critical differences
A recurring question in difference analysis is whether crit-

ical changes have been made between the versions.
In Figure 8 we are once again inspecting the package

CH.ifa.draw.standard; this time focusing on attributes.
The view for Critical attribute changes depicts all attributes
inside the selected package. Intuitively, one would examine
the attributes on a class-by-class basis; however, our experi-
ence has shown that results can be obtained faster using an
aggregated view. The six critical changes found (marked by
black color) are decreased visibilities; problems might occur
if these attributes are used from outside the classes.

8. CONCLUSION AND FUTURE WORK
Comprehension of differences between two versions of a

large model is a challenging task; it is difficult to get a gen-

Nodes: Attribute
Metrics: · Number of differences (y-pos)

· Degree of change (color)
Sorting: Degree of change

Figure 7: Relevant attribute changes

Nodes: Attribute
Metrics: · Number of changes (width)

· Degree of change (height)
· Critical Changes (color)

Sorting: Number of changes

Figure 8: Critical attribute changes

eral overview over all changes and to capture the relevant
changes in particular.

This paper presents an approach that uses polymetric
views as scalable difference visualization. Data basis for
visualization are difference metrics that map model differ-
ences onto numerical values. Furthermore, the relevance of
differences becomes measurable, if the views also contain
conventional metrics.

The approach can be applied to virtually all graph-based
model documents. A prototype has been implemented based
on the difference tool, SiDiff. In excess of this, we can in-
corporate arbitrary metrics and views. The concept can be
realized with other difference algorithms as well, however,
the DoC metric requires computation of similarities.

The examples taken from real scenarios already provide an
promising insight into the practical effect of metrics-based
difference analysis in daily practice. However, research of
difference metrics is still in early stage. Empirical case stud-
ies which aim at revealing standard sets of metrics and views
for popular model types are an open issue. Integration of
difference metrics with fine-grained software history analysis
[6] is another part of ongoing work.

9. REFERENCES
[1] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding

refactorings via change metrics. In OOPSLA’00, 2000.
[2] M. Lanza and S. Ducasse. Polymetric views - a

lightweight visual approach to reverse engineering.
IEEE Trans. Softw. Eng., 29(9):782–795, 2003.

[3] M. Lorenz and J. Kidd. Object-Oriented Software
Metrics: A Practical Guide. Prentice-Hall, 1994.

[4] P. Selonen. A Review of UML Model Comparison
Techniques. In Proc. Nordic Workshop Model Driven
Engineering, pp. 37–57, Sweden, 2007.

[5] C. Treude, S. Berlik, S. Wenzel, and U. Kelter.
Difference computation of large models. In Proc.
ESEC/FSE 2007, pp. 295–304, Croatia, 2007.

[6] S. Wenzel, H. Hutter, and U. Kelter. Tracing model
elements. In Proc. ISCM’07, pp. 104–113, France,
2007.

46

