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Abstract

Software systems exceeding a certain critical size easily become difficult to maintain
and adapt. Requirements change, platforms change and if a system does not evolve
properly, its usefulness will decay over time. This document presents MSE a robust,
scalable, extensible interexchange format and FAMIX 3.0 a family of metamodels to
represent source code.
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Chapter1. Tools for Reengineering
Software systems exceeding a certain critical size easily become difficult to maintain
and adapt. Requirements change, platforms change and if a system does not evolve
properly, its usefulness will decay over time [DDN02]. Reengineering large industrial
software systems is impossible without appropriate tool support [DT03].There is the
scalability issue (millions of lines of code are the norm rather than the exception) and
there is also the extra complexity of supporting and combining multiple tools with a
wide variety of tasks (standard forward engineering techniques must be combined with
additional reverse- and reengineering skills). The need for tool support in reengineer-
ing is reflected by the numerous tools or environments available in the reengineering
research community [BG97, DT03].

Tools are not monolithic and are often based on multiple tools performing specific
tasks: extracting information from a language, performing some analysis, displaying,
computing reports.... Therefore there is a need for a specification of an interexchange
format and also a common source code meta model to represent facts about software
under analysis [DDT99, LTP04].

Figure 1.1: Typical tool infrastructure.

Figure 1.1 shows the general structure of a reengineering environment. At the
lowest level it shows the source code or stored models which can be imported into
the reengineering environment by appropriated parsers. The middle level shows the
repository, which contains an abstracted model of the source code. The top level shows
the tools that use the repository as their information base. The repository’s meta-model
is the central part that lets everything work together. The properties of the repository,
and thus of the complete environment, are highly influenced by the meta-model that
describes what and in which way information is modeled. The meta-model not only
determines if the right information is available to perform the intended reengineering

5



Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

tasks, but also influences issues such as scalability, extensibility, support for multiple
models, and information exchange. The interexchange format is important because it
serves as a glue between tools and model extractors often written in different languages.

Goals. In this deliverable we describe

• MSE a compact, simple and robust exchange format.

• FAMIX30 the third version of a common source code metamodel used to extract
fact from languages in a language independent manner.
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Chapter2. InterExchange Format
Several interexchange formats exist: Rigi standard format [Won98], CDIF [Com94,
NTD98], TA [Hol98], GXL [HWS00], MSE used by the Moose, data exchange in
Bauhaus [CEK+00]. Several attempts to unify them failed [Let98], GXL [HWS00]. In
this section, we present MSE (for the moose interexchange format). MSE is based on
the experience gained since 1996 in the development of the Moose software analysis
platform [NDG05]: we started using CDIF (for ER based code models) [Com94], then
XMI [XMI05, Gro98, Fre00, Sch01] (for EMOF based code models), and finally we
designed MSE to be simple, scalable, robust (for FAME [KV08] based metamodels).
MSE has been used to save FAMIX models [DTD01].

Some criteria. Repository information is often stored in text files. It is a lightweight
way of storage, which is particularly well-suited for information exchange. Important
criteria of the format which is used to store the information are human readability,
lightweight manipulation, the ability to incrementally load information, and the non-
influence of the entity loading order [LLL00]. Saint-Denis et al. [SDSK00] describe
a set of 13 criteria that are important for an exchange format: Transparency (encoding
and decoding processes specified by the model interchange format do not lose, add or
alter any information contained in the original model), Scalability, Simplicity, Neutral-
ity (model interchange format is independent of user-specific modeling constructs in
order to allow a maximum number of model users to share model information), Formal-
ity (well specified), Flexibility, Evolvavility, Popularity, Meta-Model Identity, Solution
Reuse, Legibility (ease with which a human may read and understand the format, facil-
itates manual manipulations on model interchange object), and Integrity (interchanged
information reaches its destination without errors). Ducasse and Tichelaar present as-
pects that describe the actual structure of the exchange format because the structure has
an impact on the functionality of the environment such as supporting multi-models or
incremental loading [DT03]: flat-nested-chunk and support for nary.

2.1 MSE: a compact, simple and robust format

The MSE format allows one to specify models for import and export with Fame a
simple meta meta model [KV08]. Similar to XML, MSE is generic and can specify
any kind of data, regardless of the metamodel. In addition MSE is simple, compact,
readable and extensible.

It is similar to XML, the main difference being that instead of using verbose tags,
it makes use of parentheses to denote the beginning and ending of an element. MSE is
based on the experience gained since 1996 in the development of the Moose software
analysis platform [NDG05]. MSE has been used to save FAMIX models [DTD01].

2.1.1 An Example

The following snippet provides an example of a small model:
An example MSE file might look as follows
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("Sample MSE file"
(LIB.Library

(librarian
(LIB.Person

(name ’Adrian Kuhn’)))
(books

(LIB.Book
(title ’Design Patterns’)
(authors (ref: 1) (ref: 2) (ref: 3) (ref: 4)))

(LIB.Book
(title ’Eclipse: Principles, Patterns, and Plug-Ins’)
(authors (ref: 1) (ref: 5)))

(LIB.Book
(title ’Smalltalk Best Practice Patterns’)
(authors (ref: 5)))))

(LIB.Person (id: 1)
(name ’Erich Gamma’))

(LIB.Person (id: 2)
(name ’Richard Helm’))

(LIB.Person(id: 3)
(name ’Ralph Johnson’))

(LIB.Person(id: 4)
(name ’John Vlissides’))

(LIB.Person(id: 5)
(name ’Kent Beck’)))

The above MSE file describes a library with a librarian and 3 books by 5 authors.
As you can see, it is either possible to nest elements (see the librarian) or the refer to
them using the ref: tag.

2.1.2 For Meta models

In MSE we can also express the meta model of the model expressed above. The
meta-model (or schema, if you prefer) of the file can be stored in the same format.

("Meta-model of above file"
(FM3.Package

(name ’LIB’)
(classes

(FM3.Class
(name ’Library’)
(attributes

(FM3.Property
(name ’librarian’)
(type (ref: 2)))

(FM3.Property
(name ’books’)
(multivalued true)
(type (ref: 1)))))

(FM3.Class (id: 1)
(name ’Book’)
(attributes

(FM3.Property
(name ’title’)
(type (ref: String)))

(FM3.Property
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(name ’authors’)
(multivalued true)
(type (ref: 2)))))

(FM3.Class (id: 2)
(name ’Person’)
(attributes

(FM3.Property
(name ’name’)
(type (ref: String))))))))

2.1.3 For Models of Code

Here is an example of MSE used to exchange model of code.

( (FAMIX.Namespace (id: 1)
(name ’aNamespace’))

(FAMIX.Package (id: 201)
(name ’aPackage’))

(FAMIX.Package (id: 202)
(name ’anotherPackage’)
(parentPackage (ref: 201)))

(FAMIX.Class (id: 2)
(name ’ClassA’)
(container (ref: 1))
(parentPackage (ref: 201)))

(FAMIX.Method
(name ’methodA1’)
(signature ’methodA1()’)
(parentType (ref: 2))
(LOC 2))

(FAMIX.Attribute
(name ’attributeA1’)
(parentType (ref: 2)))

(FAMIX.Class (id: 3)
(name ’ClassB’)
(container (ref: 1))
(parentPackage (ref: 202)))

(FAMIX.Inheritance
(subclass (ref: 3))
(superclass (ref: 2))))

The file defines 8 entities: 1 Namespace, 2 Packages, 2 Classes, 1 Method, 1 At-
tribute and 1 Inheritance. For each of these entities it provides a unique identifier (e.g.,
(id: 1)) and it defines properties. In general, properties can be either primitive, like
(name ’aNamespace’), or they can point to another entity, like in the case of (container
(ref: 1)) which denotes that the container property of ClassA points to the instance of
Namespace named aNamespace.

The overall object graph can be seen graphically below (see Figure2.1).

2.2 MSE Specification
MSE is a file format to store FAME compliant metamodels and models [KV08].

Remark that all MSE files must use UTF-8 encoding.
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Figure 2.1: The object graph of the sample MSE file.

2.2.1 Grammar

The following grammar expressed in EBNF cover all the syntax of the MSE format
where

• ? : which means that the symbol (or group of symbols in parenthesis) to the left
of the operator is optional (it can appear zero or one times).

• * : which means that something can be repeated any number of times (and pos-
sibly be skipped altogether).

• + : which means that something can appear one or more times.

The following

Root := Document ?
Document := OPEN ElementNode * CLOSE
ElementNode := OPEN ELEMENTNAME Serial ? AttributeNode * CLOSE
Serial := OPEN ID INTEGER CLOSE
AttributeNode := OPEN SIMPLENAME ValueNode * CLOSE
ValueNode := Primitive | Reference | ElementNode
Primitive := STRING | NUMBER | Boolean
Boolean := TRUE | FALSE
Reference := IntegerReference | NameReference
IntegerReference := OPEN REF INTEGER CLOSE
NameReference := OPEN REF ELEMENTNAME CLOSE

OPEN := "("
CLOSE := ")"
ID := "id:"
REF := "ref:"
TRUE := "true"
FALSE := "false"
ELEMENTNAME := letter ( letter | digit ) * ( "." letter ( letter | digit ) * )
SIMPLENAME := letter ( letter | digit ) *
INTEGER := digit +
NUMBER := "-" ? digit + ( "." digit + ) ? ( ( "e" | "E" ) ( "-" | "+" ) ? digit + ) ?
STRING := ( "’" [^’] * "’" ) +
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digit := [0-9]
letter := [a-zA-Z_]
comment := """ [^"] * """

2.3 Conclusion
MSE represents our experience in exchanging source code models. Our experience

with cumbersome CDIFs, verbose XMI formats led us to design a simple, readable,
compact, incremental and robust interexchange format.

There is a missing part in MSE: the metadata about the extraction such as what
is the system extracted, its date of extraction, the version and the tools used to ex-
tract it. Such information does not have to have a syntactic support per se and can be
represented as special model entities.
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Chapter3. Source Code Metamodels
Once we have a format defined, it is important to specify the model to represent source
code elements. This section and the subsequent ones describe the global structure of
the FAMIX model. They introduce the core model (which illustrates the core entities
and associations), the abstract part of the model (defining the abstract superclasses that
will be extended). This document describes the version 3.0 of the FAMIX metamodel.
It is a major revision over FAMIX2.1 [DTD01].

FAMIX is a family of meta-models for representing models related to various facets
of software systems. These meta-models are typically geared towards enabling analysis
and they provide a rich API that can be used for querying and navigation. In this
document we will not present the complete API but explain the key classes.

In addition it is important to understand that the goal of FAMIX is to represent in
a language independent fashion programs. While this is possible to represent several
languages with a common subsets, it is important to realize that

1. We have to do some compromises - sometimes for a given language a simpler
solution could be better.

2. Meta model elements should be extended to support specific language features.
In Moose we use class extensions (the fact that a method can be packaged in a
different package than its classes, and that a class can get extra method when
other packages are loaded) to extend the core metamodel classes without being
forced to subclasses them.

3. While a meta model can be language independent, the analyses built on top of it
may have to be language specific.

3.1 Overview of FAMIX
FAMIX is a family of meta models: it was extended to support history analysis

[GD06, GDL04, DGF04, G0̂5], aspects [FKDD11], duplication, coevolving entities
[GDAK+07], files, authors, svn, [DGK06]. At it core it consists of a language inde-
pendent meta-model that can represent in a uniform way multiple object-oriented and
procedural languages. Figure 3.1 offers a an overview of the class hierarchy, including
some of the most used extensions. The hierarchy is to be read from left to right, the
entities to the right being specializations of those to the left.

12
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Figure 3.1: FAMIX core overview.

3.2 Core
In most cases, you get enough information if you master the core types entities

that model an object-oriented system. These are Namespace, Package, Class, Method,
Attribute, and the relationships between them, namely Inheritance, Access and Invoca-
tion. Figure 3.2 below provides an overview of these classes.

This model is an incorrect overview from two points of view:

1. It does not show all entities. For example, a Method has also Parameters and
LocalVariables.

2. At places, it shows direct relationships when in reality they happen through in-
heritance. For example, the Access points to an Attribute, while in reality it
points to a superclass (StructuralEntity). However, this picture is also useful be-
cause for most practical purposes it is all you need. Let us go through it step by
step.
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Figure 3.2: FAMIX core essential entities.

First, please note the missing arrows on the associations. This is not a mistake. In
FAMIX, all associations are bidirectional.

Note that package and namespaces are two different entities. Indeed a package
represents a group of entities but without providing a scoping mechanism. A names-
pace provides a scoping mechanism. This distinction is important because some lan-
guages only have namespaces (classes are grouped into namespaces), other only have
one namespace and several packages.

Types.
Types are central to object-oriented systems. In this section, we take a closer look

at the type hierarchy and related classes.
The root of the hierarchy is simply Type. This is a generic class representing a type

in an object-oriented language. It can have many Methods and Attributes.
A type can also take part in inheritance relationships. This happens by means of

Inheritance entities that connect pairs of types. Multiple inheritance is modeled by
simply having multiple inheritance objects connecting the same subclass with multiple
superclasses.

Type has several specializations for specific kinds of types. The most prominent is
provided by Class. This models a typical class in Smalltalk, Java or C++, but it also
models a Java interface (by means of the isInterface boolean property).

A PrimitiveType is just that: a primitive type. For example, int or char will be
modeled using PrimitiveType entities.

ParameterizedType and ParameterizableClass model Java generics or C++ tem-
plates. In particular, a ParameterizableClass represents the generic definition, while
the ParameterizedType represents the actual usage of the generic in a specific context.

Let me provide an example based on the following Java snippet:

public class ClassA<B,C> ...
...
public ClassA<ActualTypeA,ActualTypeB> anAttribute;

In this case, ClassA will be represented by a ParameterizableClass, and the de-
clared type of anAttribute will be an actual ParameterizedType linking to ClassA. Fur-
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thermore, B and C will be ParameterTypes, and the corresponding slots from the Pa-
rameterizedType will point to the actual types ActualTypeA and ActualTypeB.
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3.3 Package Name: Famix-Core
Famix core is the general meta-model independent of any programming language.

It should not contain language-specific features such as class extensions (Smalltalk),
partial classes (C#), etc. Its root entity is Famix.Entity.

FAMIX.Entity extends Moose.Entity

FAMIXEntity is the abstract root class of the FAMIX meta-model entities.

Fields.

/annotationInstances: AnnotationInstance*→ annotatedEntity

FAMIX.AnnotationInstance extends FAMIX.Entity

AnnotationInstance is an instance of an AnnotationType. It links an An-
notationType to an actual entity.
For example, the following is an annotation instance in Smalltalk. $<$prim-
itive: ’primAnyBitFromTo’ module:’LargeIntegers’>.
And the following is an AnnotationInstance in Java: @Test(timeout = 500)

Fields.

annotationType: AnnotationType→ instances
annotatedEntity: Entity→ annotationInstances
/attributes: AnnotationInstanceAttribute*→ parentAnnotationInstance

FAMIX.AnnotationInstanceAttribute extends FAMIX.Entity

This models the actual value of an attribute in an AnnotationInstance.
In the following AnnotationInstance of Java, timeout is an annotation in-
stance attribute : @Test(timeout = 500)

Fields.

parentAnnotationInstance: AnnotationInstance→ attributes
annotationTypeAttribute: AnnotationTypeAttribute→ annotationAttributeInstances
value: String

FAMIX.SourceAnchor extends FAMIX.Entity

FAMIXSourceAnchor is an abstract class representing a pointer to a source.
The source can be identified in multiple ways as specified by the sub-
classes. The famix entity that this class is a source pointer for, is accessible
via element property.
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Figure 3.3: Annotations.

Fields.

element: SourcedEntity→ sourceAnchor

FAMIX.SourceLanguage extends FAMIX.Entity

FAMIXSourceLanguage represents the programming language in which
an entity is written. It is used for dispatching entity actions for specific
languages. For example, formatting a source text will be performed ac-
cording to the language. A project may have multiple languages.

A source language has a name and entities that are written in this language.
One can create a default source language for a project by not associating
any entities to it. In this case, all entities that do not have specific source
langauge, belong to the default source language. One can attach entities to
a sourceLanguage using addSourceEntity:.

Fields.

/name: String
/sourcedEntities: SourcedEntity*→ declaredSourceLanguage

FAMIX.SourcedEntity extends FAMIX.Entity

FAMIXSourcedEntity models any fact in a program source and it is the
superclass (root class) of all source code entities and their relationships. It
is a FAMIXEntity and it can hold comments, a source anchor and a source
language.

Fields.

sourceAnchor: SourceAnchor→ element
declaredSourceLanguage: SourceLanguage→ sourcedEntities
/comments: Comment*→ container

17
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FAMIX.CustomSourceLanguage extends FAMIX.SourceLanguage

FAMIXCustomSourceLanguage represents any source language that is not
supported by default in moose. So, the CustomSourceLanguage is simply
a possibility to specify some language from an outside parser without for
which there are no specific tools defined. Actually, it just represents the
name of the language with a string.

Fields.

name: String

FAMIX.UnknownSourceLanguage extends FAMIX.SourceLanguage

FAMIXUnknownSourceLanguage represents source language that has not
been specified by the user.

The difference with CustomSourceLanguage is that people can export from
outside a CustomSourceLanguage with a string representing the language,
while the UnknownSourceLanguage is provided by default (null object
pattern).

FAMIX.Association extends FAMIX.SourcedEntity

FAMIXAssociation is an abstract superclass for relationships between Famix
named entities. It defines a polymorphic API refined by subclasses: essen-
tially from, to, next and previous.

From and To properties are abstract at this level, but specific implemen-
tations can have multiple ends and properties. For example, FAMIXIn-
heritance has: (i) From mapped to the subclass; (ii) To mapped to the
superclass.

Next and Previous properties provide an order of the appearence of these
associations in code. The order is calculated within a particular relation-
ship for example, method invocation order within a calling method (from).
For example in java, the following code method a() b(); c(); will produce
two invocation associations first from method a to method b, and second
from method a to method c. These associations are bound together and
can be navigated with previous and next.

Fields.

previous: Association→ next
/from: NamedEntity
/to: NamedEntity
/next: Association→ previous

18
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FAMIX.Comment extends FAMIX.SourcedEntity

FAMIXComment represents one instance of a comment (in the sense of
programming language comments) for any Famix sourced entity. The
commented sourced entity is called the container in the FAMIX model.

Fields.

content: String
container: SourcedEntity→ comments

FAMIX.NamedEntity extends FAMIX.SourcedEntity

FAMIXNamedEntity is an abstract class, root of the hierarchy modeling
source code entities. FAMIXNamedEntity has a name and it is physically
present in source code. For example, methods, variables, types, names-
paces. The name of the entity only contains the basic name and not the
"fully qualified name". Apart from the name, it also has modifiers (e.g.
public, protected, final, etc.) and it can be marked as a stub. A stub is a
FAMIXNamedEntity that is used in the source code but its source is not
available.

When applicable, a FAMIXNamedEntity also points to its containing pack-
age accessible via parentPackage.

Any of its subclasses must define the meaning of the belongsTo prop-
erty, an abstract property that provides polymorphic traversal. For ex-
ample, FAMIXClass defines belongsTo as being the container, while the
FAMIXMethod defines belongsTo to point to the parentType. belongsTo
can be used to calculate the "full qualified name" of a named entity. be-
longsTo is a derived property, which means that it is always computed
from the information of other properties.

It can also return the list of invocations performed on this entity (consid-
ered as the receiver) (receivingInvocations).

Fields.

/isPublic: Boolean
/receivingInvocations: Invocation*→ receiver
/isPrivate: Boolean
/isPackage: Boolean
/belongsTo: ContainerEntity
/isFinal: Boolean
/isProtected: Boolean
/nameLength: Number
name: String
/isAbstract: Boolean
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modifiers: String*
parentPackage: Package→ childNamedEntities
isStub: Boolean

FAMIX.Access extends FAMIX.Association

FAMIXAccess represents an access to a variable by a behavioural entity
(for example, a function or a method).

For example if the method foo accesses the instance variable x, there is an
access with the following information: (i) From: aFAMIXMethod (foo)
(ii) To: aFAMIXAttribute (x)

aFAMIXMethod (foo) can be accessed using the message accessor (and
from) aFAMIXAttribute (x) can be accessed using the message variable
(and to).

Furthermore it can be tagged as read or write using isWrite: aBoolean.

For each access in the source code, there is one famix access created even
if it is from the same behavioral entity towards the same variable.

Fields.

accessor: BehaviouralEntity→ accesses
variable: StructuralEntity→ incomingAccesses
/isRead: Boolean
isWrite: Boolean

FAMIX.Inheritance extends FAMIX.Association

FAMIXInheritance represents an inheritance relationship between one sub-
type (e.g. a subclass) and one supertype (e.g. a superclass).

To represent multiple inheritance, multiple instances of FAMIXInheri-
tance should be created. FAMIXInheritance puts in relation two types,
this way inheritance, for example, between classes and between interfaces
can be modelled.

Fields.

subclass: Type→ superInheritances
superclass: Type→ subInheritances

FAMIX.Invocation extends FAMIX.Association

FAMIXInvocation represents the invocation of a message (signature) on
a receiver by a behavioural entity. FAMIXInvocation has: (i) sender: the
behavioral entity that sends the message; (ii) receiver: the structural entity
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(variable) that receives the message; (iii) candidates: the list of potential
behavioral entities that are actually being invoked. This is particularly
useful for dynamic languages.

In an invocation, From is the sender of the message and To is the list of
candidates. For each invocation in the source code, there is one famix in-
vocation created even if it is from the same behavioral entity towards the
same variable and the same message. For example in smalltalk, the follow-
ing code anObject aSelector. will produce one invocation association from
current method to a variable anObject with candidate aSelector. The list
of candidates will also contain all the methods defining a similar signature
as aSelector.

Fields.

candidates: BehaviouralEntity*→ incomingInvocations
sender: BehaviouralEntity→ outgoingInvocations
receiver: NamedEntity→ receivingInvocations
signature: String
receiverSourceCode: String

Figure 3.4: Invocations.

FAMIX.Reference extends FAMIX.Association

A FAMIXReference entity is created whenever one manipulates a class
name as a variable. For example: (i) if the class is passed as a parameter
to a method, or (ii) if a static method is invoked on a class.

For example, in the following Java code method a() B bObject = new B();
B.aStaticMethod(); There is only one reference which is created when
the static method aStaticMethod is invoked on class variable B. In the
declaration of B objects, the class B is the type of variable b but not a
FAMIXReference. And instantiation new B() is an invocation of the de-
fault constructor, and not a FAMIXReference.
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Note that FAMIXReference are defined between two FAMIXContainer-
Entity entities. So, it can also be used to represent dependencies between
container entities that are computed from the dependencies of contained
entities. For example, references between two packages can be computed
from dependencies between classes of the packages.

Fields.

target: ContainerEntity→ incomingReferences
source: ContainerEntity→ outgoingReferences

FAMIX.ContainerEntity extends FAMIX.NamedEntity

FAMIXContainerEntity is the abstract superclass for source code entities
containing other entities. Types, methods, and packages are examples of
FAMIXContainerEntity.

Fields.

/incomingReferences: Reference*→ target
(Java)/definedAnnotationTypes: AnnotationType*→ container
/types: Type*→ container
/outgoingReferences: Reference*→ source

FAMIX.LeafEntity extends FAMIX.NamedEntity

FAMIXLeafEntity is the abstract superclass for source code entities that
do not have children in Abstract syntax tree. For example, it represents
variables of programming languages.

FAMIX.BehaviouralEntity extends FAMIX.ContainerEntity

FAMIXBehaviouralEntity is an abstract superclass for any kind of be-
havior. For example, functions and methods. It has a name because
it is a named entity but it also has a signature in the format: method-
Name(paramType1, paramType2). The signature property is necessary for
a behavioral entity. An external parser should provide a few metrics that
cannot be derived from the model such as cyclomatic complexity, num-
berOfStatements and numberOfConditionals. Other metrics can be com-
puted from the model if enough information is provided such as num-
berOfLinesOfCode (from source anchor) and numberOfComments (from
FAMIXComment).

It provides properties to manage: (i) parameters (ii) local variables (iii)
accesses to variables, and (iv) invocations to and from other behavioural
entities.
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Optionally, it can also specify a declaredType (e.g. return types for func-
tions). This is useful for modeling behaviours from statically typed lan-
guages.

Fields.

/numberOfMessageSends: Number
numberOfStatements: Number
/numberOfAccesses: Number
/incomingInvocations: Invocation*→ candidates
/localVariables: LocalVariable*→ parentBehaviouralEntity
/accesses: Access*→ accessor
cyclomaticComplexity: Number
numberOfLinesOfCode: Number
numberOfComments: Number
/outgoingInvocations: Invocation*→ sender
numberOfConditionals: Number
/numberOfOutgoingInvocations: Number
numberOfParameters: Number
declaredType: Type→ behavioursWithDeclaredType
signature: String
/parameters: Parameter*→ parentBehaviouralEntity

FAMIX.ScopingEntity extends FAMIX.ContainerEntity

FAMIXScopingEntity represents an entity defining a scope at a global
level.

Packages and Namespaces are two different concept in terms of scoping
entity. Namespaces have semantic meaning in the language so they influ-
ence the unique name of the entity, while Packages are physical entities
for packaging. In Smalltalk the two are explicitly different. In C++ we
have explicit Namespaces, but not so explicit Packages. In Java, we have
both Namespace (what you define in your Java source), and Package (the
folder structure), but they happen to overlap in naming (although one is
with . and the other one is with /) so people tend to see them as packages
only.

Fields.

/childScopes: ScopingEntity*→ parentScope
/functions: Function*→ parentScope
/globalVariables: GlobalVariable*→ parentModule
parentScope: ScopingEntity→ childScopes
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FAMIX.Type extends FAMIX.ContainerEntity

FAMIXType is a generic class representing a type. It has several special-
izations for specific kinds of types, the typical one being FAMIXClass. A
type is defined in a container (instance of FAMIXContainer). The con-
tainer is typically a namespace (instance of FAMIXNamespace), but may
also be a class (in the case of nested classes), or a method (in the case of
anonymous classes).

A type can have multiple subtypes or supertypes. These are modelled by
means of FAMIXInheritance instances.

Fields.

/numberOfConstructorMethods: Number
/numberOfAttributesInherited: Number
/numberOfMethodProtocols: Number
/numberOfStatements: Number
/superInheritances: Inheritance*→ subclass
/fanOut: Number
/methods: Method*→ parentType
/weightOfAClass: Number
/totalNumberOfChildren: Number
/numberOfPublicMethods: Number
/typeAliases: TypeAlias*→ aliasedType
/weightedMethodCount: Number
/hierarchyNestingLevel: Number
/numberOfComments: Number
/numberOfMethodsInHierarchy: Number
/numberOfAttributes: Number
container: ContainerEntity→ types
/attributes: Attribute*→ parentType
/numberOfRevealedAttributes: Number
/numberOfAnnotationInstances: Number
/subclassHierarchyDepth: Number
/numberOfPublicAttributes: Number
/behavioursWithDeclaredType: BehaviouralEntity*→ declaredType
/numberOfAccessesToForeignData: Number
/fanIn: Number
/subInheritances: Inheritance*→ superclass
/numberOfAbstractMethods: Number
/numberOfProtectedAttributes: Number
/numberOfMethodsInherited: Number
/numberOfMethodsOverriden: Number
/numberOfMethodsAdded: Number
/numberOfMethods: Number
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/numberOfAccessorMethods: Number
/numberOfPrivateAttributes: Number
/numberOfProtectedMethods: Number
/numberOfMessageSends: Number
/structuresWithDeclaredType: StructuralEntity*→ declaredType
/numberOfChildren: Number
/numberOfParents: Number
/numberOfPrivateMethods: Number
/tightClassCohesion: Number
/isAbstract: Boolean
/numberOfDuplicatedLinesOfCodeInternally: Number
/numberOfLinesOfCode: Number
/numberOfDirectSubclasses: Number

Figure 3.5: Types.

FAMIX.StructuralEntity extends FAMIX.LeafEntity

FAMIXStructuralEntity is the abstract superclass for basic data structure
in the source code. A structural entity has a declaredType that points to
the type of the variable.

Fields.

declaredType: Type→ structuresWithDeclaredType
/incomingAccesses: Access*→ variable

FAMIX.Function extends FAMIX.BehaviouralEntity

FAMIXFunction represents a behavioural entity in a procedural language.
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Fields.

parentScope: ScopingEntity→ functions
parentModule: Module

FAMIX.Method extends FAMIX.BehaviouralEntity

FAMIXMethod represents a behaviour in an object-oriented language.

A FAMIXMethod is always contained in a parentType.

Fields.

/isSetter: Boolean
(Java)/caughtExceptions: CaughtException*→ definingMethod
/isConstructor: Boolean
(Java)/thrownExceptions: ThrownException*→ definingMethod
/numberOfInvokedMethods: Number
hasClassScope: Boolean
/numberOfAnnotationInstances: Number
/isGetter: Boolean
/hierarchyNestingLevel: Number
timeStamp: String
/isConstant: Boolean
(Java)/declaredExceptions: DeclaredException*→ definingMethod
parentType: Type→ methods
kind: String
/isOverriden: Boolean
/isOverriding: Boolean
/isInternalImplementation: Boolean

FAMIX.Namespace extends FAMIX.ScopingEntity

FAMIXNamespace represents a namespace from the source language. Names-
paces have semantic meaning in the language so they influence the unique
name of the entity.

A namespace denotes an entity that has meaning from a language point
of view. For example, in C++, there exist a concept with the same name
that has no other responsibility beside providing a lexical scope for the
contained classes and funcions.

When an entity is placed inside a namespace, the fully qualified name
(mooseName) is affected.
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Fields.

numberOfAttributes: Number
/numberOfClasses: Number
/instability: Number
/numberOfNonInterfacesClasses: Number
/numberOfMethods: Number
/distance: Number
/bunchCohesion: Number
/afferentCoupling: Number
/efferentCoupling: Number
/numberOfLinesOfCode: Number
/abstractness: Number

FAMIX.Package extends FAMIX.ScopingEntity

FAMIXPackage represents a package in the source language, meaning that
it provides a means to group entities without any baring on lexical scoping.

Java extractors map Java packages to FAMIXNamespaces. They can also
mirror the same information in terms of FAMIXPackage instances.

Fields.

/numberOfProviderPackages: Number
/weightedMethodCount: Number
/bunchCohesion: Number
/numberOfClasses: Number
/distance: Number
numberOfClientPackages: Number
/numberOfOutportClasses: Number
/instability: Number
numberOfMethods: Number
/afferentCoupling: Number
/childNamedEntities: NamedEntity*→ parentPackage
/relativeImportanceForSystem: Number
/efferentCoupling: Number
/totalNumberOfLinesOfCode: Number
/numberOfHiddenClasses: Number
/abstractness: Number

FAMIX.AnnotationType extends FAMIX.Type

FAMIXAnnotationType represents the type of an annotation. In some lan-
guages, Java and C#, an annotation as an explicit type. An AnnotationType
can have a container in which it resides.
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Fields.

container: ContainerEntity→ definedAnnotationTypes
/instances: AnnotationInstance*→ annotationType

FAMIX.Class extends FAMIX.Type

FAMIXClass represents an entity which can build new instances. A FAMIX-
Class is a FAMIXType, therefore it is involved in super/sub types relation-
ships (depending on the language) and it holds attributes, methods.

FAMIX does not model explicitly interfaces, but a FAMIXClass can rep-
resent a Java interface by setting the isInterface property.

A class is typically scoped in a namespace. To model nested or anonymous
classes, extractors can set the container of classes to classes or methods,
respectively.

Fields.

/numberOfInternalDuplications: Number
isInterface: Boolean
/numberOfExternalDuplications: Number

FAMIX.PrimitiveType extends FAMIX.Type

It represents a primitive type. For example, int or char are modeled using
PrimitiveType entities. Void is also considered a primitive type.

FAMIX.TypeAlias extends FAMIX.Type

This entity models a typedef in C.

Fields.

aliasedType: Type→ typeAliases

FAMIX.Attribute extends FAMIX.StructuralEntity

FAMIXAttribute represents a field of a class. It is an attribute of the parent
type.

Fields.

/numberOfGlobalAccesses: Number
parentType: Type→ attributes
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/numberOfAccessingClasses: Number
hasClassScope: Boolean
/numberOfAccesses: Number
/hierarchyNestingLevel: Number
/numberOfAccessingMethods: Number
/numberOfLocalAccesses: Number

FAMIX.GlobalVariable extends FAMIX.StructuralEntity

FAMIXGlobalVariable represents a global variable in the source code.

Fields.

parentScope: ScopingEntity
parentModule: Module→ globalVariables

FAMIX.ImplicitVariable extends FAMIX.StructuralEntity

FAMIXImplicitVariable represents a variable defined by the compiler in a
context, such as self, super, thisContext.

Fields.

parentBehaviouralEntity: BehaviouralEntity

FAMIX.LocalVariable extends FAMIX.StructuralEntity

FAMIXLocalVariable represents a local variable in the scope of a be-
havioural entity.

Fields.

parentBehaviouralEntity: BehaviouralEntity→ localVariables

FAMIX.Parameter extends FAMIX.StructuralEntity

FAMIXParameter represents one parameter in a method declaration.

Fields.

parentBehaviouralEntity: BehaviouralEntity→ parameters

FAMIX.UnknownVariable extends FAMIX.StructuralEntity

FAMIXUnknownVariable represents some unknown entity encountered
while importing the project, possibly due to a syntax error in the source
code.
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FAMIX.AnnotationTypeAttribute extends FAMIX.Attribute

This models the attribute defined in a Java AnnotationType. In Java, anno-
tation type attributes have specific syntax and use.

For example, in Java the following AnnotationType has four Annotation-
TypeAttributes (id, synopsis, engineer and date are attributes).

public @interface MyAnno int id(); String synopsis(); String engineer()
default "[unassigned]"; String date() default "[unimplemented]";

When using an annotation, an annotation instance is created that points
back to the annotation type. The annotation instance has attributes that
are annontation instance attributes and point back to their annotation type
attributes.

Fields.

/annotationAttributeInstances: AnnotationInstanceAttribute*→ annotationTypeAt-
tribute

/parentAnnotationType: AnnotationType
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3.4 Package Name: Famix-SourceAnchor
Famix source anchor adds to the famix core meta-model representation of access

to the source code of the famix entities.

FAMIX.FileAnchor extends FAMIX.SourceAnchor

This offers a source anchor that connects a sourced entity to a file through
a relative path stored in the fileName. In addition, the source can be further
specified with a startLine and an endLine number in the file.

Fields.

endLine: Number
startLine: Number
startColumn: Number
fileName: String
endColumn: Number

FAMIX.SourceTextAnchor extends FAMIX.SourceAnchor

This stores the source as an actual string variable. It is to be used when it
is not possible to link to the actual source.
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3.5 Package Name: Famix-Java
Famix java adds to the famix core meta-model representation of language specific

features for Java language describing entities such as exceptions, generics, and enums.

FAMIX.Exception extends FAMIX.Entity

This is the abstract representation of an Exception. It is specific to Java. It
points to an exceptionClass. The class of a FAMIXException is a normal
FAMIXClass.

Fields.

exceptionClass: Class

FAMIX.CaughtException extends FAMIX.Exception

This is an exception that is explicitly handled by a method. For example,
in Java it is an exception that appears in a catch statement.

Fields.

definingMethod: Method→ caughtExceptions

FAMIX.DeclaredException extends FAMIX.Exception

This is an exception explicitly declared as being thrown by a method.

Fields.

definingMethod: Method→ declaredExceptions

FAMIX.ThrownException extends FAMIX.Exception

This is an exception explicitly thrown by a method.

Fields.

definingMethod: Method→ thrownExceptions

FAMIX.JavaSourceLanguage extends FAMIX.SourceLanguage

FAMIXJavaSourceLanguage represents the Java programming language
in which an entity is written.
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FAMIX.Enum extends FAMIX.Type

This models an enum in Java.

For example, the following Java code defines an Enum with seven Enum-
Values.

public enum Day SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURS-
DAY, FRIDAY, SATURDAY

Fields.

/values: EnumValue*→ parentEnum

FAMIX.ParameterType extends FAMIX.Type

ParameterType represents the symbolic type used in parameterizable classes.
This is a FAMIXType.

Example: public class AClass$<$A,B,C> ...

Where AClass is a ParameterizableClass. A, B and C are ParameterType
of AClass.

FAMIX.ParameterizedType extends FAMIX.Type

FAMIXParameterizedType represents a type with arguments. So, it is an
instantiation for the use of FAMIXParameterizableClass. It can appear as
a type of an attribute, a type of a local variable, a parameter of a method,
a return of a method, etc. Example:

... public Map$<$String,Collection> anAttribute; ...

Where Map$<$String,Collection> is the FAMIXParameterizedType of anAt-
tribute. String and Collection are arguments. Map is the parameterizable-
Class.

Fields.

arguments: Type*
parameterizableClass: ParameterizableClass

FAMIX.EnumValue extends FAMIX.StructuralEntity

It models the values defined in an FAMIXEnum. These are attributes of
enums with default values.

For example, the following Java code defines an Enum with seven Enum-
Values.

public enum Day SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURS-
DAY, FRIDAY, SATURDAY
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Fields.

parentEnum: Enum→ values

FAMIX.ParameterizableClass extends FAMIX.Class

ParameterizableClass represents the definition of a generic class with pa-
rameters. The parameters of the entity are modeled as ParameterType.

Example: public class AClass$<$A,B,C> ...

Where AClass is a ParameterizableClass. A, B and C are ParameterType
of AClass.

Fields.

/parameters: ParameterType*
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3.6 Package Name: Famix-File
Famix file adds to the famix core meta-model representation of a filesystem.

FILE.AbstractFile extends FAMIX.Entity

The abstract file system class. It is subclassed by File and Folder.

Fields.

name: String

FILE.File extends FILE.AbstractFile

It represents a file in the file system.

Fields.

numberOfInternalMultiplications: Number
totalNumberOfLinesOfText: Number
/numberOfExternalDuplications: Number
numberOfCharacters: Number
numberOfEmptyLinesOfText: Number
numberOfLinesOfText: Number
numberOfExternalClones: Number
numberOfInternalClones: Number
numberOfDuplicatedFiles: Number
averageNumberOfCharactersPerLine: Number
/numberOfInternalDuplications: Number
numberOfKiloBytes: Number
numberOfBytes: Number

FILE.Folder extends FILE.AbstractFile

It represents a folder in the file system. It can contain other files or folders.

Fields.

numberOfFolders: Number
totalNumberOfLinesOfText: Number
numberOfLinesOfText: Number
numberOfFiles: Number
numberOfEmptyLinesOfText: Number
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3.7 Package Name: Famix-C
Famix C adds to the famix core meta-model representation of language specific

features for C language describing entities such as module.

FAMIX.CSourceLanguage extends FAMIX.SourceLanguage

FAMIXCSourceLanguage represents the C language.

FAMIX.Module extends FAMIX.ScopingEntity

FAMIXModule represents a that basically provides a simple scoping ab-
straction for a .C/.CPP/.H files.

3.8 Conclusion
This document presents a simple, compact, readable interexchange format. Then it

presents the core of the FAMIX a family of metamodels.
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