
Deriving Metric Thresholds from Benchmark Data
Tiago L. Alves

Software Improvement Group
Amsterdam, The Netherlands

and University of Minho
Braga, Portugal

Email: t.alves@sig.eu

Christiaan Ypma
Software Improvement Group
Amsterdam, The Netherlands,

and Utrecht University
Utrecht, The Netherlands

Email: c.ypma@sig.eu

Joost Visser
Software Improvement Group
Amsterdam, The Netherlands

Email: j.visser@sig.eu

Abstract—A wide variety of software metrics have been pro-
posed and a broad range of tools is available to measure them.
However, the effective use of software metrics is hindered by the
lack of meaningful thresholds. Thresholds have been proposed
for a few metrics only, mostly based on expert opinion and a
small number of observations.

Previously proposed methodologies for systematically deriving
metric thresholds have made unjustified assumptions about the
statistical properties of source code metrics. As a result, the
general applicability of the derived thresholds is jeopardized.

We designed a method that determines metric thresholds
empirically from measurement data. The measurement data for
different software systems are pooled and aggregated after which
thresholds are selected that (i) bring out the metric’s variability
between systems and (ii) help focus on a reasonable percentage
of the source code volume. Our method respects the distributions
and scales of source code metrics, and it is resilient against
outliers in metric values or system size.

We applied our method to a benchmark of 100 object-oriented
software systems, both proprietary and open-source, to derive
thresholds for metrics included in the SIG maintainability model.

I. INTRODUCTION

Software metrics have been around since the dawn of
software engineering. Well-known source code metrics in-
clude lines of code, the McCabe complexity metric [1], and
the Chidamber-Kemerer suite of object-oriented metrics [2].
Metrics are intended as a control instrument in the software
development and maintenance process. For example, metrics
have been proposed to identify problematic locations in source
code to allow effective allocation of maintenance resources.
Tracking metric values over time can be used to assess
progress in development or to detect quality erosion during
maintenance. Metrics can also be used to compare or rate
the quality of software products, and thus form the basis
of acceptance criteria or service-level agreements between
software producer and client.

In spite of the potential benefits of metrics, their effective
use has proven elusive. Metrics have been used successfully
for quantification, but have generally failed to adequately
support subsequent decision-making [3].

To elevate the use of metrics from measurement to decision-
making, it is essential to define meaningful threshold values.
These have been defined for some metrics. For example,
McCabe proposed a threshold value of 10 for his complexity

metrics, beyond which a subroutine was deemed unmaintain-
able and untestable [1]. This threshold was inspired by expe-
rience in a particular context and not intended as universally
applicable. For most metrics, thresholds are lacking or do not
generalize beyond the context of their inception.

In this paper, we present a method to derive metric threshold
values empirically from the measurement data of a benchmark
of software systems. The measurement data for different
software systems are first pooled and aggregated. Then thresh-
olds are determined that (i) bring out the metric’s variability
between systems and (ii) help focus on a reasonable percentage
of the source code volume.

We designed our method with several requirements in
mind to avoid the problems of thresholds based on expert
opinion and of earlier approaches to systematic derivation of
thresholds.

1) The method should not be driven by expert opinion
but by measurement data from a representative set of
systems (data-driven);

2) The method should respect the statistical properties of
the metric, such as metric scale and distribution and
should be resilient against outliers in metric values and
system size (robust);

3) The method should be repeatable, transparent and
straightforward to carry out (pragmatic).

In our explanation of the method the satisfaction of these
requirements is addressed in detail.

This paper is structured as follows. Section II presents an
overview of earlier attempts to determine thresholds. Sec-
tion III demonstrates the use of thresholds derived through
our method, taking the McCabe complexity metric as example.
In fact, this metric is used as a vehicle throughout the paper
for explaining and justifying our method. Section IV provides
an overview of the method itself. Section V describes our
benchmark data. Section VI provides a detailed explanation of
key steps of the method. Section VII discusses variants of the
method and possible threats. Section VIII provides evidence of
the wider applicability of the methodology by generalization
to other metrics included in the quality model [4] of the Soft-
ware Improvement Group (SIG). Finally, Section IX provides
conclusions and directions of future work.

george
978-1-4244-8628-1/10/$26.00 ©2010 IEEE

george

george

george

george

george

george

george

george
26th IEEE International Conference on Software Maintenance in Timișoara, Romania

george

george

II. RELATED WORK

In this section we review previous attempts to define metric
thresholds. We start by describing works where thresholds are
defined by experience. Then, we analyze in detail methodolo-
gies that derive thresholds based on data analysis, which are
directly related to our methodology. We provide an overview
about methodologies that derive thresholds based on error
information and from cluster analysis. Finally, we discuss
techniques to analyze and summarize metric distributions.

A. Thresholds derived from experience

Many authors defined metric thresholds according to their
experience. For example, for the McCabe metric 10 was
defined as the threshold [1], and for the NPATH metric 200
was defined as the threshold [5]. Above these values, methods
should be refactored. For the Maintainability Index metric, 65
and 85 are defined as thresholds [6]. Methods whose metric
values are higher than 85 are highly-maintainable, between 85
and 65 are moderately maintainable and, smaller than 65 are
difficult to maintain. Since these values rely on experience, it
is difficult to reproduce or generalize these results. Also, the
lack of scientific support can lead to dispute about the values.

B. Thresholds from metric analysis

Erni et al. [7] propose the use of mean (µ) and standard
deviation (σ) to derive a threshold T from project data. A
threshold T is calculated as T =µ+σ or T =µ−σ when
high or low values of a metric indicate potential problems,
respectively. This methodology is a common statistical tech-
nique which, when data is normally distributed, identifies 16%
of the observations. However, Erni et al. do not analyze the
underlying distribution, and only apply it to one system (albeit
using three releases). The problem with this methodology is
that the assumption of metrics that are normally distributed
is not justified, invalidating the use of this methodology.
Consequently, there is no guarantee that 16% of observations
will be identified as problematic code. For metrics with high
values and high variability, this methodology will identify less
than 16% of code, while for metrics with low values or low
variability, this methodology will identify more than 16% of
code. In contrast, our approach does not make assumption
about data normality. Moreover, we apply our methodology to
100 projects, both proprietary and open-source.

French [8] also proposes a methodology based on the
mean (µ) and standard deviation (σ) but using additionally
the Chebyshev’s inequality theorem (whose validity is not
restricted to normal distributions). A metric threshold T can
be calculated by T = µ + k × σ, where k is the number of
standard deviations. According to Chebyshev’s theorem, for
any distribution 1/k2 is the maximal portion of observations
outside k standard deviations. As example, to identify a 10%
maximum of code, we determine the value of k by resolving
0.1 = 1/k2. However, French proposes to divide the Cheby-
shev formula by two which is only valid for two-tailed sym-
metric distributions. The assumption of two-tailed symmetric
distributions is not justified. For one tailed distributions, the

Cantelli’s formula, 1/(1+k2), should have been used instead.
Additionally, this methodology is sensitive to large numbers
or outliers. For metrics with high range or high variation, this
technique will identify a smaller percentage of observations
than its theoretical maximum. In contrast, our methodology
was designed to derive thresholds from benchmark data and
such is resilient to high variation of data our outliers. Also,
while French applies the technique to eight Ada95 and C ++
systems, we use 100 Java and C# systems.

C. Thresholds using error models

Shatnawi et al. [9] investigate the use of Receiver-Operating
Characteristic (ROC) method to identify thresholds to predict
the existence of bugs in different error categories. They per-
form an experiment using the Chidamber and Kemerer (CKD)
metrics [2] and apply the technique to three releases of Eclipse.
Although Shatnawi et al. were able to derive thresholds to
predict errors, there are two drawbacks in their results. First,
the methodology does not succeed in deriving monotonic
thresholds. Second, for different releases of Eclipse, different
thresholds were derived. In comparison, our methodology
is based only in metric distribution analysis, it guarantees
monotonic thresholds and the addition of more systems causes
only negligible deviations.

Benlarbi et al. [10] investigate the relation of metric thresh-
olds and software failures for a subset of the CDK metrics
using linear regression. Two error probability models are
compared, one with threshold and one without. For the model
with threshold, zero probability of error exists for metric
values below the threshold. The authors conclude that there is
no empirical evidence supporting the model with threshold as
there is no significant difference between the models. El Eman
et al. [11] argue that there is no optimal class size based on
a study comparing class size and faults. The existence of an
optimal size is based on the Goldilocks conjecture which states
that the error probability of a class increases for a metric values
higher or lower a specific threshold (resembling a U-shape).
The studies of Benlarbi et al. [10] and El Eman et al. [11]
show that there is no empirical evidence for the threshold
model used to predict faults. However, these results are only
valid for the specific error prediction model and for the metrics
the authors used. Other models can, potentially, give different
results. In contrast to using errors to derive thresholds, our
methodology derives meaningful thresholds which represent
overall volume of code from a benchmark of systems.

D. Thresholds using cluster techniques

Yoon et al. [12] investigate the use of the K-means Clus-
ter algorithm to identify outliers in the data measurements.
Outliers can be identified by observations that appear either in
isolated clusters (external outliers), or by observations that ap-
pear far away from other observations within the same cluster
(internal outliers). However, this algorithm suffers from several
shortcomings: it requires an input parameter that affects both
the performance and the accuracy of the results, the process of
identifying the outliers is manual, after identifying outliers the

algorithm should be executed again, and if new systems are
added to the sample the thresholds might change significantly.
In contrast, our methodology accuracy is not influenced by
input parameters, it is automatic, and stable (the addition of
more systems results only in small variation).

E. Methodologies for characterizing metric distribution

Chidamber and Kemerer [2] use histograms to characterize
and analyze data. For each of their 6 metrics, they plotted
histograms per programming language to discuss metric distri-
bution and spot outliers in two C++ projects and one Smaltalk
project. Spinellis [13] compares metrics of four operating
system kernels: Windows, Linux, FreeBSD and OpenSolaris.
For each metric, box plots of the four kernels are put side-by-
side showing the smallest observation, lower quantile, median,
mean, higher quantile, highest observation and identify out-
liers. The box-plots are then analyzed by the author and used
to give ranks, + or −, to each kernel. However, as the author
states, ranks are given subjectively. Vasa et al. [14] proposes
the use of Gini coefficients to summarize a metric distribution
across a system. The analysis of the Gini coefficient for 10
class-level metrics using 50 Java and C# system revealed
that most of the systems have common values. More, higher
Gini values indicate problems and, when analyzing subsequent
releases of source code, a difference higher than 0.04 indicates
significant changes in the code.

Finally, several studies show that different software metrics
follow power law distributions [15], [16], [17]. Concast et
al. [15] show that for a large Smalltalk system most Chidamber
and Kemerer metrics [2] follow power laws. Louridas et
al. [16] show that the dependencies of different software arti-
facts also follow power laws. Wheeldon et al. [17] show that
different class relationships follow power laws distributions.

All the data analysis studies clearly demonstrate that met-
rics do not follow normal distributions, invalidating the use
of any statistical technique assuming a normal distribution.
However all the studies fall short in concluding how to use
these distributions, and the coefficients of the distributions, to
establish baseline values to judge systems. Moreover, even if
such baseline values were established it would not be possible
to identify the code responsible for deviations (there is no
traceability of results). In contrast, our research is focused
on defining thresholds with direct applicability to differentiate
software systems, judge quality and pinpoint problems.

III. MOTIVATING EXAMPLE

Suppose we want to compare the technical quality of four
peer-to-peer (P2P) systems. Using the SIG quality model [4]
we can arrive to a judgment of technical quality. One of
the used metrics is the McCabe metric. Using our method
to derive thresholds for the McCabe metric, we obtain 6, 8
and 15 which represent 70%, 80% and 90% of all code in
the benchmark. Using these values, quality profiles [4] can be
derived by computing the percentage of source lines of code of
the methods that fall in each of the following risk categories:
≤ 6 for low risk,]6, 8] for moderate risk,]8, 15] for high

TABLE I: Quality profiles: Unit complexity
risk: Low Moderate High Very high

JMule 0.4.1 70.52% 6.04% 11.82% 11.62%
LimeWire 4.13.1 78.21% 6.73% 9.98% 5.08%
FrostWire 4.17.2 75.10% 7.30% 11.03% 6.57%

Vuze 4.0.04 51.95% 7.41% 15.32% 25.33%

Fig. 1: Quality profiles for four P2P systems.

risk, and > 15 for very-high risk. Figure 1 and Table I show
the quality profiles of four P2P systems: JMule, LimeWire,
FrostWire and Vuze1. Pinpointing potential problems can be
done by looking at the methods that fall in the very-high risk
category. Looking at the percentages of the quality profiles we
can have an overview about overall complexity. For instance,
the Vuze system contains 48% of code in medium or higher
risk categories, of which 25% is in the very-high risk category.
Finally, quality comparisons can be performed: LimeWire is
the least complex of the four systems, with 22% of its code
in medium or higher risk categories, followed by FrostWire
(25%), then by JMule (30%) and, finally, Vuze (48%).

IV. BENCHMARK-BASED THRESHOLD DERIVATION

The methodology proposed in this section was designed
according to the following requirements: i) it should respect
the statistical properties of the metric, such as scale and
distribution; ii) it should be based on data analysis from a
representative set of systems (benchmark); iii) it should be
repeatable, transparent and straightforward to execute.

Figure 2 summarizes the six steps of the methodology.
1. metrics extraction: metrics are extracted from a bench-

mark of software systems. For each system System, and
for each entity Entity belonging to System (e.g. method),
we record a metric value, Metric, and weight metric,
Weight for that system’s entity. As weight we will consider
the source lines of code (LOC) of the entity. As exam-
ple, for the Vuze system, there is method (entity) called
MyTorrentsView.createTabs() with a McCabe met-
ric value of 17 and weight value of 119 LOC.

2. weight ratio calculation: for each entity, we compute the
weight percentage within its system, i.e., we divide the entity
weight by the sum of all weights of the same system. For each
system, the sum of all entities WeightRatio must be 100%.
As example, for the MyTorrentsView.createTabs()

1jmule.org/, limewire.com/, www.frostwire.com/, www.vuze.com/

1. metrics extraction

System ⇀ (Entity ⇀ Metric ! Weight)

2. weight ratio calculation

System ⇀ (Entity ⇀ Metric ! WeightRatio)

3. entity aggregation

System ⇀ (Metric ⇀ WeightRatio)

4. system aggregation

Metric ⇀ WeightRatio

5. weight ratio aggregation

Metric Metric Metric

WeightRatio ⇀ Metric

6. thresholds derivation

80%70% 90%

Legend

⇀

!

System

Entity

Metric

Weight

WeightRatio

map relation (one-to-many
relationship)

product (pair of columns or
elements)

Represents ind iv idua l
systems (e.g. Vuze)

Represents a measurable
entity (e.g java method)

Represents a metric value
(e.g. McCabe of 5)

Represents the weight
value (e.g. LOC of 10)

Represents the weight
percentage inside of the
system (e.g. entity LOC
divided by system LOC)

Fig. 2: Summary of the methodology steps.

method entity, we divide 119 by 329, 765 (total LOC for Vuze)
which represents 0.036% of the overall Vuze system.

3. entity aggregation: we aggregate the weights of all entities
per metric value, which is equivalent to computing a weighted
histogram (the sum of all bins must be 100%). Hence, for
each system we have a histogram describing the distribution
of weight per metric value. As example, all entities with a
McCabe value of 17 represent 1.458% of the overall LOC of
the Vuze system.

4. system aggregation: we normalize the weights for the
number of systems and then aggregate the weight for all sys-
tems. Normalization ensures that the sum of all bins remains
100%, and then the aggregation is just a sum of the weight
ratio per metric value. Hence, we have a histogram describing
a weighted metric distribution. As example, a McCabe value
of 17 corresponds to 0.658% of all code.

5. weight ratio aggregation: we order the metric values
in ascending way and take the maximal metric value that
represents 1%, 2%, ..., 100% of the weight. This is equivalent
to computing a density function, in which the x-axis represents
the weight ratio (0-100%), and the y-axis the metric scale. As
example, according to the benchmark used for this paper, for
60% of the overall code the maximal McCabe value is 2.

6. thresholds derivaton: thresholds are derived by choosing
the percentage of the overall code we want to represent.
For instance, to represent 90% of the overall code for the
McCabe metric, the derived threshold is 14. This threshold is
meaningful, since not only it means that it represents 90% of
the code of a benchmark of systems, but it also can be used
to identify 10% of the worst code.

As a final example, the SIG uses thresholds derived by
choosing 70%, 80% and 90% of the overall code, which derive

TABLE II: Number of systems per technology and license.
Technology License n LOC

Java Proprietary 60 8,435K
OSS 22 2,756K

C# Proprietary 17 794K
OSS 1 10K
Total 100 11,996K

TABLE III: Number of systems per functionality.
Functionality type n

Catalogue or register of things or events 8
Customer billing or relationship management 5
Document management 5
Electronic data interchange 3
Financial transaction processing and accounting 12
Geographic or spatial information systems 2
Graphics and publishing tools or system 2
Embedded software for machine control 3
Job, case, incident or project management 6
Logistic or supply planning and control 8
Management or performance reporting 2
Mathematical modeling (finance or engineering) 1
Online analysis and reporting 6
Operating systems or software utility 14
Software development tool 3
Stock control and order processing 1
Trading 1
Workflow support and management 10
Other 8
Total 100

thresholds 6, 8 and 14, respectively. This allows to identify
code to be fixed in long-term, medium-term and short-term,
respectively. Furthermore, these percentiles are used in quality
profiles to characterize code according to four categories: low
risk (between 0− 70%), moderate risk (70− 80%), high risk
(80− 90%) and very-high risk (> 90%).

We present an analysis of these steps in Section VI.

V. BENCHMARKING DATA

We applied our methodology for deriving thresholds to a
fairly representative set of available software systems. This set
includes 100 systems in modern object-oriented technologies
(Java and C#), both proprietary from SIG customers and open-
source, developed by different organizations, from a broad
range of domains. All the 100 systems were used (additional
systems considered as outliers were removed from the initial
set of systems). The system sizes range from over 3K LOC
to near 800K LOC, with a total of near 12 million LOC.
Table II specifies the number of systems per technology (Java
or C#) and license type (proprietary or open-source). Table III
characterizes the used software systems according to their
functionality using the taxonomy defined by ISBSG in [18].

For each system we derived metrics at two levels. At method
level, LOC (unit size), McCabe (unit complexity) and number
of parameters (unit interfacing) were derived. At file level,
fan-in (module inward coupling) and number of methods
(module interface size) were derived. The choice of these
metrics was motivated by their use in the quality model used

(a) Histogram (b) Quantiles

Fig. 3: McCabe distribution for Vuze system represented with
a histogram and a quantile plot.

by SIG and TÜV Informationstechnik (TÜViT) for software
certification [19] which is an extension of the quality model
proposed by Heitlager et al. [4]. All metrics were calculated
with the SIG Software Analysis Toolkit (SAT) version 3.2.0.

Outlier systems were removed by first inspecting the distri-
bution of metrics. Systems whose distributions are radically
different from other system’s distributions were considered
outliers. The identified systems were only removed after the
outlier suspicion was validated by experts with knowledge
about the systems. As rule-of-thumb, we found useful to apply
the outlier-detection technique used for box-plots on the 50%
quantile: all systems whose value is higher than the upper
quantile plus 1.5 IQR is considered a possible outlier.

VI. ANALYSIS OF THE METHODOLOGY STEPS

The methodology introduced in Section IV makes two major
decisions: weighting by size, and using relative size as weight.
In this section, based on data analysis we provide thorough ex-
planation about these decisions that are the fundamental part of
our methodology. Also, we investigate the representativeness
of the derived thresholds.

Section VI-A, introduces the statistical analysis and plots
used throughout the paper. Section VI-B, provides a detailed
explanation about the effect of weighting by size. Section VI-C
shows the importance of the use of relative size when ag-
gregating measurements from different systems. Finally, in
Section VI-D we provide evidence of the representativeness
of the derived thresholds by applying the thresholds to the
benchmark data and checking the results.

We discuss variants and threats in Section VII.

A. Background

A common technique to visualize a distribution is to plot a
histogram. Figure 3a depicts the distribution of the McCabe
values for the Vuze system. The x-axis represents the McCabe
values and the y-axis represents the number of methods that
have such a McCabe value (frequency). Figure 3a allows us to
observe that more than 30.000 methods have a McCabe value
≤ 10 (the frequency of the first bin is 30.000).

Histograms, however, have several shortcomings. The
choice of the bins affects the shape of the histogram possibly

(a) Non-weighted (b) Weighted

Fig. 4: McCabe distribution for the Vuze system (non-
weighted and weighted by LOC) annotated with the x and
y values for the first three changes of the metric.

causing misinterpretation of data. Also, it is difficult to com-
pare the distributions of two systems when they have different
sizes since the y-axis can have significantly different values.
Finally, histograms are not very good to represent the bins
with lower frequency.

To overcome these problems, an alternative way to examine
a distribution of values is to plot its Cumulative Density
Function (CDF) or the CDF inverse, the Quantile function.
Figure 3b depicts the distribution of the McCabe values for
the Vuze system using a Quantile plot. The x-axis represents
the percentage of observations (percentage of methods) and the
y-axis represents the McCabe values. The use of the quantile
function is justifiable, because we want to determine thresholds
(the dependent variable, in this case the McCabe values) as
a function of the percentage of observations (independent
variable). Also, by using the percentage of observations instead
of the frequency, the scale becomes independent of size of the
system making it possible to compare different distributions.
In Figure 3b we can observe that 96% of methods have a
McCabe value ≤ 10.

Despite that histograms and quantile plots represent the
same information, the quantile plot allows better visualization
of the full metric distribution. Therefore, in this paper all
distributions will be depicted with quantile plots.

All the statistical analysis and charts were done with R [20].

B. Weighting by size

Figure 4a depicts the McCabe distribution for the Vuze
system already presented in Figure 3b in which we annotated
the quantiles for the first three changes of the McCabe value.
We can observe that up to the 66% quantile the McCabe value
is 1, i.e. 66% of all methods have a metric value of 1. Up to
the 77% quantile, the McCabe values are smaller than or equal
to 2 (77−66 = 11% of the methods have a metric value of 2),
and up to the 84% quantile have a metric value smaller than or
equal to 3. Only 16% of methods have a McCabe value higher
than 3. Hence, Figure 4a shows that the metric variation is
concentrated in just a small percentage of the overall methods.

Instead of considering every method equally (every method
has a weight of 1), we will use the method’s LOC as its weight.

(a) All quantiles (b) All quantiles (cropped)

(c) All weighted quantiles (d) All weighted quantiles (cropped)

Fig. 5: Non-weighted and weighted McCabe distributions for
100 projects of the benchmark.

Figure 4b depicts the weighted distribution of the McCabe
values for the Vuze system. Hence, instead of having the
percentage of methods in the x-axis, we will have now the
percentage of LOC.

Comparing Figure 4a to Figure 4b, we can observe that in
the weighted distribution the variation of the McCabe values
starts much earlier. The first three changes for the McCabe
values are at 18%, 28% and 36% quantiles.

In sum, for the Vuze system, both weighted and non-
weighted plots show that large McCabe values are concen-
trated in just a small percentage of code. However, while in
the non-weighted distribution the variation of McCabe values
happen in the tail of the distribution (66% quantile), for the
weighted distribution the variation starts much earlier, at the
18% quantile.

Figure 5 depicts the non-weighted and weighted distri-
butions of the McCabe metric for 100 projects. Each line
represents an individual system. Figures 5a and 5c depict
the full McCabe distribution and Figures 5b and 5d depict a
cropped version of the previous, restricted to quantiles higher
than or to 70% and to a maximal McCabe value of 100.

When comparing Figure 4 to Figure 5 we observe that, as
seen for the Vuze system, weighting by LOC emphasizes the
metric variability.

Hence, weighting by LOC not only emphasizes the differ-
ence between methods in a single system, but also make the
differences between systems more evident. A discussion about
the correlation of the LOC metric with other metrics and the
impact of it on our methodology is presented in Section VII-A.

(a) Full distribution (b) Cropped distribution

Fig. 6: Summarized McCabe distribution. The line in black
represents the summarized McCabe distribution. Each gray
line depicts the McCabe distribution of a single system.

(a) Distribution mean differences (b) Quality profiles variability

Fig. 7: McCabe variability

C. Using relative size

To derive thresholds we need to summarize the metric, i.e.,
we need to aggregate the measurements from all systems.

To summarize the metric, we first perform a weight nor-
malization step. For each method we compute the percentage
of LOC that method represents in the system, i.e. we divide
the method’s LOC by the total LOC of the system it belongs
to. This represents Step 2 of our methodology, presented in
Figure 2. Then, we just use all measurements together.

Conceptually, to summarize the McCabe metric, we have
taken all curves of density functions for all systems and
combined them into a single curve. Performing weight nor-
malization ensures that every system is represented equally in
the benchmark, limiting the influence of bigger systems over
small systems in the overall result.

Figure 6 represents the density functions of the summarized
McCabe metric (plotted in black) and the McCabe metric
for all individual systems (plotted in gray), also shown in
Figure 5d. As expected, the summarized density function
respects the shape of individual system’s density function.

A discussion of alternatives to summarize a metric distribu-
tion are presented in Section VII-B.

D. Choosing percentile thresholds

We have observed in Figures 5 and 6 that systems differen-
tiate the most in the last quantiles. In this section we present

evidence that it is justifiable to choose thresholds in the tail of
the distribution and that the derived thresholds are meaningful.

Figure 7a quantifies the variability of the McCabe distribu-
tion between systems. The full line depicts the McCabe distri-
bution (also shown in Figure 6) and the dashed lines depict the
MAD above the distribution and below the distribution. The
MAD is a measure of variability defined as the mean of the
absolute differences between each value and a central point.
From Figure 7a we can observe that both the MAD above and
below the curve increase rapidly towards the last quantiles (it
has a similar shape as the metric distribution itself). In sum,
from Figure 7a, we can observe that the variability between
systems is concentrated in the tail of the distribution. It is
important to take this variability into account when choosing
a quantile for deriving a threshold. Choosing a quantile for
which there is very low variability (e.g. 20%) will result in a
threshold which will not allow to distinguish quality between
systems. Choosing a quantile for which there is too much
variability (e.g. 99%) might fail to identify code in many
systems. Hence, to derive thresholds it is justifiable to choose
quantiles from the tail of the distribution.

As part of our methodology we proposed the use of the
70%, 80% and 90% quantiles to derive thresholds. For the
McCabe metric, using our benchmark, these quantiles yield to
thresholds 6, 8 and 14, respectively.

Now we are interested to investigate if the thresholds
are indeed representative of those percentages of code. For
that, we computed quality profiles for each system in our
benchmark. For low risk, we considered the lines of code for
methods with McCabe between 1−6, for moderate risk 7−8,
for high risk 9−14, and for very-high risk > 14. This means,
that for low risk we expect to identify around 70% of the
code, and for each of the other risk categories 10%. Figure 7b
depicts a box plot for all systems per risk category. The x-axis
represents the four risk categories, and the y-axis represents the
percentage of volume (lines of code) of each system per risk
category. The size of the box is the interquartile range (IQR)
and is a measure of variability. The vertical lines indicate the
lowest/maximum value within 1.5 IQR. The crosses in the
charts represent systems whose risk category is higher than
1.5 IQR. In the low risk category, we observe large variability
which is explained because it is considering a large percentage
of code. For the other categories, from moderate to very-high
risk, we can observe that variability increases. This increase
of variability was also expected, since we have observed that
the variability of the metric is higher for the last quantiles of
the metric. We can observe that there are only a few crosses
per risk category, which indicates that most of the systems are
represented by the box plot. Finally, for all risk categories,
looking to the line in the middle of the box, the median of all
observations, we observe that indeed the median is according
to our expectations. For low risk category, the median is near
70%, while for other categories the median is near 10% which
indicates that the derived thresholds are representative of the
chosen percentiles.

Summarizing, the box plot shows that the derived thresholds

allow to observe differences between systems in all risk
categories. Also, as expected, we can observe that around 70%
of the code is identified in the low risk category and around
10% is identified for the moderate, high and very-high risk
categories since the boxes are centered around the expected
percentages for each category.

VII. VARIANTS AND THREATS

In this section we present a more elaborated discussion and
alternatives taken into account regarding the two decisions
in our methodology: weighting with size, and using relative
size. Additionally, we discus other issues regarding removal
of outliers and issues affecting metric computation.

Section VII-A we discuss the reasoning behind using LOC
to weight the metric and possible risks due to correlation
between metrics. Section VII-B discusses the need of aggre-
gating measurements using relative weight, and discusses other
possible alternatives to achieve similar results. Section VII-C
explains how to identify outliers and the criteria to remove
them. Finally, Section VII-D explain the impact of using
different tools or configurations when deriving metrics.

A. Weight by size

A fundamental part of our methodology is the combination
of two metrics, more precisely, a metric for which thresholds
are going to be derived with a size metrics such as LOC.
In some contexts, particular attention should be paid when
combining two metrics. For instance, when designing a soft-
ware quality model it is desirable that each metric measures
a unique attribute of the software. When two metrics are
correlated it is often the case that they are measuring the
same attribute. In this case only one should be used. We
acknowledge such correlation between McCabe and LOC. The
Spearman correlation value between McCabe and LOC for our
data set (100 systems) is 0.779 with very-high confidence (p-
value < 0.01).

In our methodology, the combination of metrics has a
different purpose. We use LOC as a measure of size and use
it to have a better representation of the part of the system
we are characterizing. Instead of assuming every unit (e.g.
method) of the same size, we take its size in the system
measured in LOC. When doing this, we observed that we
emphasized the variation of the metric allowing a more clear
distinction between software systems. Hence, the correlation
between LOC and other metrics poses no problem.

When referring to the LOC metric we could mean either
logical or physical lines of code. In any case, since these
metrics are highly correlated similar results are expected.
Other LOC metrics could also be considered, however the
study of such alternatives is deferred to future work.

B. Use of relative weight

In Section VI-C we advocate the use of relative weight to
aggregate measurements from all systems. The reasoning is
that, since all the systems have similar distributions, the overall
result should represent all systems equally. If we consider all

(a) Effect of large systems in aggre-
gation.

(b) Mean, Median as alternatives to
Relative Weight.

Fig. 8: Effect of using relative weight in the presence of large
systems and comparison with alternatives.

measurements together without applying any aggregation tech-
nique the large systems (systems with a bigger LOC) would
influence the overall result. Figure 8a compares the influence
of size between simply aggregating all measurements together
(black dashed line) and using relative weight (black full line)
using as example the Vuze and JMule McCabe distributions
(depicted in gray). Vuze has about 330 thousand LOC, while
JMule has about 40 thousand LOC. We can observe that the
dashed line is very close to the Vuze system meaning that the
Vuze system has a stronger influence in the overall result. In
comparison, using the relative weight results in a distribution
in the middle of the Vuze and JMule distributions as depicted
in the full line. Hence, it is justifiable to use the relative weight
since it allows us to be size independent and it takes into
account all measurements in equal proportion.

In alternative to the use of relative weight we could consider
taking the mean/median quantile for all systems. Since the
mean/median are measures of central tendency, we could
compute the distributions for every system (as shown in gray
in Figure 6) and then, take the mean/median value of all dis-
tributions per quantile. Figure 8b compares the relative weight
to mean quantile and median quantile. As we can observe the
result distributions shape is similar although thresholds for the
70%, 80% and 90% quantiles would be different. There are
also problems with the mean/median. The mean is a good
measure of central tendency if the underneath distribution is
normal. We applied Shapiro-Wilk test [21] for normality for
all quantiles and verified that the distribution is not normal.
Additionally, the mean is sensitive to extreme values, and
would favor higher values when aggregating measurements.
The median, on the other hand, relies on the order of the
distributions to take a central value just taking into account the
value of the central point, ignoring information. Additionally,
for the last quantiles, the median relies on few data points,
i.e., very few methods fall in the last quantiles, meaning
that the distribution in the last quantiles will be sensitive
to the addition of new data points. Finally, by using the
mean/median the metric maximal value will not correspond to
the maximal observable value, hiding information about the
metric distribution. For our benchmark, the maximal McCabe

(a) McCabe distribution with an out-
lier.

(b) McCabe characterization with
and without an outlier.

Fig. 9: Example of outliers and outlier effect on the McCabe
characterization.

value is 911. However, from Figure 8b, for the mean and
median, we can observe that values of the metric for the 100%
quantile (maximal value of the metric) are much lower.

C. Outliers

In statistics, it is common practice to check for the existence
of outliers. An outlier is an observation whose value is distant
relative to a set of observations.

According to Mason et al. [21], outliers are relevant because
they can obfuscate the phenomena being studied or may
contain interesting information that is not contained in other
observations. There are several strategies to deal with outliers:
remove observations, or use outlier-resistant techniques.

In our analysis, we compared the distribution of metrics
between systems. Figure 9a depicts the distribution of the
McCabe metric for our data set of 100 systems (in gray) plus
one outlier system (in black). We can observe that the outlier
system has a metric distribution radically different from the
other systems.

Figure 9b depicts the effect of the presence of the outlier
when summarizing the McCabe metric. The full line represents
the curve that summarizes the McCabe distribution for 100
systems, previously shown in Figure 6, and the dashed line
represents the result of the 100 systems plus the outlier. From
Figure 9b, we can observe that the presence of the outlier
has limited influence in the overall result, meaning that our
methodology has resilience against outliers.

D. Impact of the tools/scoping

The computation of metric values and metric thresholds can
be affected by the measurement tool and by scoping.

Different tools implement different variations of the same
metrics. Taking as example the McCabe metric, some tools
implement the Extended McCabe metric, while other might
implement the Strict McCabe metric and also call it Mc-
Cabe. As the values from these metrics can be different,
the computed thresholds can also be different. To overcome
this problem, the same tool should be used both to derive
thresholds and to analyze systems using the derived thresholds.

The configuration of the tool with respect to which files to
include or exclude in the analysis (scoping) also influences the

(a) Metric distribution (b) Box plot per risk category

Fig. 10: Unit size (method size in LOC)

(a) Metric distribution (b) Box plot per risk category

Fig. 11: Unit interfacing (number of parameters)

computed thresholds. For instance, the existence of unit test
code, which contains very little complexity, will result in lower
threshold values. On the other hand, the existence of generated
code, which normally have very high complexity, will result
in higher threshold values. Hence, it is extremely important to
know which data is used for calibration. As previously stated,
for deriving thresholds we removed both generated code and
test code from our analysis.

VIII. THRESHOLDS FOR SIG’S QUALITY MODEL METRICS

Throughout the paper, the McCabe metric was used as case
study. To investigate the applicability of our methodology to
other metrics, we repeated the analysis for the SIG quality
model metrics. We found that our methodology can be suc-
cessfully applied to derive thresholds for all these metrics.

Figures 10, 11, 12, and 13 depict the distribution and the box
plot per risk category for unit size (method size in LOC), unit
interfacing (number of parameters per method), module inward
coupling (file fan-in), and module interface size (number of
methods per file), respectively.

From the distribution plots, we can observe, as for McCabe,
that for all metrics both the highest values and the variability
between systems is concentrated in the last quantiles.

Table IV summarizes the quantiles used and the derived
thresholds for all the metrics from the SIG quality model.
As for the McCabe metric, we derived quality profiles for
each metric using our benchmark in order to verify that the
thresholds are representative of the chosen quantiles. The

(a) Metric distribution (b) Box plot per risk category

Fig. 12: Module Inward Coupling (file fan-in)

(a) Metric distribution (b) Box plot per risk category

Fig. 13: Module Interface Size (number of methods per file)

results are again similar. Except for the unit interfacing metric,
the low risk category is centered around 70% of the code and
all others are centered around 10%. For the unit interfacing
metric, since the variability is relative small until the 80%
quantile we decided to use 80%, 90% and 95% quantiles to
derive thresholds. For this metric, the low risk category is a
round 80%, the moderate risk is near 10% and the other two
around 5%. Hence, from the box plots we can observe that
the thresholds are indeed recognizing code around the defined
quantiles.

IX. CONCLUSION

A. Contributions

We proposed a novel methodology for deriving software
metric thresholds and a calibration of previously introduced
metrics. Our methodology improves over others by fulfilling
three fundamental requirements: i) it respects the statistical
properties of the metric, such as metric scale and distribution;
ii) it is based on data analysis from a representative set of
systems (benchmark); iii) it is repeatable, transparent and
straightforward to carry out. These requirements were achieved
by aggregating measurements from different systems using
relative size weighting. Our methodology was applied to a
large set of systems and thresholds were derived by choosing
specific percentages of overall code of the benchmark.

B. Discussion

Using a benchmark of 100 object-oriented systems (C#
and Java), both proprietary and open-source, we explained

TABLE IV: Metric thresholds and used quantiles for the SIG
quality model metrics.

Metric / Quantiles 70% 80% 90%
Unit complexity 6 8 14
Unit size 30 44 74
Module inward coupling 10 22 56
Module interface size 29 42 73
Metric / Quantiles 80% 90% 95%
Unit interfacing 2 3 4

in detail our methodology for the McCabe metric. We have
shown that the distribution of the metric is preserved and
that the methodology is resilient to the influence of large
systems or outliers. Thresholds were derived using 70%, 80%
and 90% quantiles and checked against the benchmark to
show that thresholds indeed represent these quantiles. The
analysis of these results was replicated with success using
four other metrics from the SIG quality model. Variants in
our methodology for deriving threshold were analyzed as well
as threats to our methodology.

Our methodology has proven capable to derive thresholds
for all the metrics of the SIG quality model. For unit inter-
facing the 80%, 90% and 95% was used since the metric
variability only increases much later than for other metrics.
Thresholds for all other metrics were derived using 70%, 80%
and 90%. For all metrics, our methodology showed that the
derived thresholds are representative of the chosen quantiles.

C. Industrial applications

The thresholds derived with our methodology have been
successfully used in practice by SIG for software analysis [4],
benchmarking [22] and certification [23]. Thresholds based on
expert opinion have been replaced by thresholds derived with
our methodology which have been used with success.

Our methodology has also been applied for other metrics.
Luijten et al. [24] found empirical evidence that systems with
higher technical quality have higher issue solving efficiency.
The thresholds used for classifying issue efficiency were
derived using the methodology described in this paper.

D. Future work

Several avenues of future work are foreseen. Empirical stud-
ies to validate software metrics with external qualities, using
metric thresholds, such as the one from Luijten et al. [24] are
foreseen. Techniques to characterize curves based on a fixed
number of points, such as proposed by Schwetlick et al. [25]
could be used to choose the quantiles to better characterize the
metric distribution. Finally, it would be interesting to apply our
methodology to suites of metrics proposed by others, e.g. to
the CDK metrics [2], or to metrics for other types of software
artifacts, e.g. databases or XML schemas.

ACKNOWLEDGMENTS

Thanks to Harro Stokman and Joost Schalken for inspiring
discussions, to José Pedro Correia by the support of extracting
the metrics, and to several other colleagues of the SIG for

providing comments to earlier versions of this work. The first
author is supported by the Fundação para a Ciência e a

Tecnologia, grant SFRH/BD/30215/2006.

REFERENCES

[1] T. J. McCabe, “A complexity measure,” Software Engineering, IEEE

Transactions on, vol. SE-2, no. 4, pp. 308–320, Dec. 1976.
[2] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented

design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, 1994.
[3] N. E. Fenton and M. Neil, “Software metrics: roadmap,” in ICSE -

Future of SE Track, 2000, pp. 357–370.
[4] I. Heitlager, T. Kuipers, and J. Visser, “A practical model for measuring

maintainability,” International Conference on the Quality of Information

and Communications Technology (QUATIC’07), pp. 30–39, 2007.
[5] B. A. Nejmeh, “NPATH: a measure of execution path complexity and

its applications,” Commun. ACM, vol. 31, no. 2, pp. 188–200, 1988.
[6] D. Coleman, B. Lowther, and P. Oman, “The application of software

maintainability models in industrial software systems,” J. Syst. Softw.,
vol. 29, no. 1, pp. 3–16, 1995.

[7] K. Erni and C. Lewerentz, “Applying design-metrics to object-oriented
frameworks,” in METRICS ’96: Proceedings of the 3rd International

Symposium on Software Metrics. Washington, DC, USA: IEEE
Computer Society, 1996, p. 64.

[8] V. A. French, “Establishing software metric thresholds,” International

Workshop on Software Measurement (IWSM’99), 1999.
[9] R. Shatnawi, W. Li, J. Swain, and T. Newman, “Finding software metrics

threshold values using ROC curves,” Journal of Software Maintenance

and Evolution: Research and Practice, 2009.
[10] S. Benlarbi, K. E. Emam, N. Goel, and S. Rai, “Thresholds for object-

oriented measures,” in ISSRE ’00: Proc. of the 11th International

Symposium on Software Reliability Engineering. IEEE, 2000, p. 24.
[11] K. El Emam, S. Benlarbi, N. Goel, W. Melo, H. Lounis, and S. N. Rai,

“The optimal class size for object-oriented software,” IEEE Trans. Softw.

Eng., vol. 28, no. 5, pp. 494–509, 2002.
[12] K.-A. Yoon, O.-S. Kwon, and D.-H. Bae, “An approach to outlier

detection of software measurement data using the K-means clustering
method,” in ESEM’07. IEEE Computer Society, 2007, pp. 443–445.

[13] D. Spinellis, “A tale of four kernels,” in ICSE’08. New York, NY,
USA: ACM, 2008, pp. 381–390.

[14] R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz, “Comparative analysis
of evolving software systems using the gini coefficient,” in ICSM’09.
IEEE Computer Society, 2009, pp. 179–188.

[15] G. Concas, M. Marchesi, S. Pinna, and N. Serra, “Power-laws in a
large object-oriented software system,” IEEE Trans. Softw. Eng., vol. 33,
no. 10, pp. 687–708, 2007.

[16] P. Louridas, D. Spinellis, and V. Vlachos, “Power laws in software,”
TOSEM’08, vol. 18, no. 1, Sep 2008. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=1391984.1391986

[17] R. Wheeldon and S. Counsell, “Power law distributions in class rela-
tionships,” SCAM’03, vol. 0, p. 45, 2003.

[18] C. Lokan, “The Benchmark Release 10 - project planning edition,”
International Software Benchmarcking Standards Groups Ltd., Tech.
Rep., February 2008.

[19] Software Improvement Group (SIG) and TÜV Informationstechnik
GmbH (TÜViT), “SIG/TÜViT evaluation criteria – Trusted Product
Maintainability, version 1.0,” 2009.

[20] R Development Core Team, R: A Language and Environment for

Statistical Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2009, ISBN 3-900051-07-0.

[21] R. L. Mason, R. F. Gunst, and J. L. Hess, Statistical Design and Analysis

of Experiments, 2nd ed. Wiley, 2003.
[22] J. P. Correia and J. Visser, “Benchmarking technical quality of software

products,” in WCRE ’08: Proceedings of the 2008 15th Working Confer-

ence on Reverse Engineering. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 297–300.

[23] ——, “Certification of technical quality of software products,” in Proc.

of the Int’l Workshop on Foundations and Techniques for Open Source

Software Certification, 2008, pp. 35–51.
[24] B. Luijten and J. Visser, “Faster defect resolution with higher technical

quality of software,” in SQM ’10: Proc. of the 4th International

Workshop on Software Quality and Maintainability, 2010.
[25] H. Schwetlick and T. Schütze, “Least squares approximation by splines

with free knots,” 1995.

